-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInstruct.py
169 lines (152 loc) · 8.55 KB
/
Instruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import copy
import time
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertModel
from sklearn import metrics
import torch.nn.functional as F
from bucket_iterator import BucketIterator
from data_utils import Bert_ABSA_Dataset, ABSA_collate_fn, ABSA_Dataset_Reader
from model.CTS_BERT import CTS_BERT
class Instructor:
def __init__(self, args):
self.args = args
self.train_dataloader = None
if 'BERT' in args.model_name:
time.sleep(5)
bert = BertModel.from_pretrained('bert-base-uncased')
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
print('preparing {0} dataset ...'.format(args.dataset_name))
train_data = Bert_ABSA_Dataset(args, args.train_dataset, bert_tokenizer)
test_data = Bert_ABSA_Dataset(args, args.test_dataset, bert_tokenizer)
self.train_dataloader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True, collate_fn=ABSA_collate_fn)
self.test_dataloader = DataLoader(dataset=test_data, batch_size=args.batch_size, collate_fn=ABSA_collate_fn)
self.model = args.model(args, bert).to(args.device)
else: # GloVe
absa_dataset = ABSA_Dataset_Reader(args)
self.train_dataloader = BucketIterator(data=absa_dataset.train_data, batch_size=args.batch_size, shuffle=True)
self.test_dataloader = BucketIterator(data=absa_dataset.test_data, batch_size=args.batch_size)
self.model = args.model(args, absa_dataset.embedding_matrix).to(args.device)
self._print_args()
if torch.cuda.is_available():
print('cuda memory allocated:', torch.cuda.memory_allocated(device=args.device.index))
def _train(self, optimizer, max_test_acc_overall=0):
max_test_acc = 0
max_f1 = 0
global_step = 0
model_path = ''
for epoch in range(self.args.num_epoch):
print('*' * 100)
print('epoch: {}'.format(epoch))
n_correct, n_total = 0, 0
for i_batch, sample_batched in enumerate(self.train_dataloader):
global_step += 1
self.model.train()
optimizer.zero_grad() # 梯度清0
inputs = (i.to(self.args.device) for i in sample_batched)
outputs = self.model(inputs)
targets = sample_batched[-1].to(self.args.device)
loss = F.cross_entropy(outputs, targets, reduction='mean') # 计算输出与实际的偏差
loss.backward() # 梯度下降
optimizer.step() # 更新优化器
if global_step % self.args.log_step == 0: # 每过几步就再测试集上训练一下
n_correct += (torch.argmax(outputs, -1) == targets).sum().item()
n_total += len(outputs)
train_acc = n_correct / n_total
test_acc, f1 = self._evaluate()
if test_acc > max_test_acc:
max_test_acc = test_acc
if test_acc > max_test_acc_overall:
model_path = './save_model/{}_{}_acc_{:.4f}_f1_{:.4f}'.format(self.args.model_name, self.args.dataset_name, test_acc, f1)
self.best_model = copy.deepcopy(self.model)
print('>>> save model: {}'.format(model_path))
if f1 > max_f1:
max_f1 = f1
print('loss: {:.4f}, acc: {:.4f}, test_acc: {:.4f}, f1: {:.4f}'.format(loss.item(), train_acc, test_acc, f1))
return max_test_acc, max_f1, model_path
def _test(self):
self.model = self.best_model
# bert = BertModel.from_pretrained('bert-base-uncased')
# self.model = CTS_BERT(args=self.args, bert=bert).to(self.args.device)
# absa_dataset = ABSA_Dataset_Reader(self.args)
# self.test_dataloader = BucketIterator(data=absa_dataset.test_data, batch_size=self.args.batch_size)
# self.model = self.args.model(self.args, absa_dataset.embedding_matrix).to(self.args.device)
# temp = torch.load('./save_model/CTS_BERT_res14_acc_0.8696_f1_0.8103')
# self.model.load_state_dict(state_dict=temp)
self.model.eval()
test_report, test_confusion, acc, f1 = self._evaluate(show_results=True)
print('acc = {0}, f1 = {1}'.format(acc, f1))
print('=========================')
print("Precision, Recall and F1-Score...")
print(test_report)
print("Confusion Matrix...")
print(test_confusion)
def _evaluate(self, show_results=False):
self.model.eval()
n_test_correct, n_test_total = 0, 0
targets_all, outputs_all = None, None
with torch.no_grad():
for batch, sample_batched in enumerate(self.test_dataloader):
inputs = (i.to(self.args.device) for i in sample_batched)
targets = sample_batched[-1].to(self.args.device)
outputs = self.model(inputs)
n_test_correct += (torch.argmax(outputs, -1) == targets).sum().item()
n_test_total += len(outputs)
targets_all = torch.cat((targets_all, targets), dim=0) if targets_all is not None else targets
outputs_all = torch.cat((outputs_all, outputs), dim=0) if outputs_all is not None else outputs
test_acc = n_test_correct / n_test_total
f1 = metrics.f1_score(targets_all.cpu(), torch.argmax(outputs_all, -1).cpu(), labels=[0, 1, 2],
average='macro')
labels = targets_all.data.cpu()
predict = torch.argmax(outputs_all, -1).cpu()
if show_results:
report = metrics.classification_report(labels, predict, digits=4)
confusion = metrics.confusion_matrix(labels, predict)
return report, confusion, test_acc, f1
return test_acc, f1
def get_bert_optimizer(self, model):
if 'BERT' in self.args.model_name:
bert_model = model.bert
bert_params_dict = list(map(id, bert_model.parameters()))
if self.args.Inter_aspect:
bert_model_2 = model.AA_encoder.bert_model
bert_params_dict_2 = list(map(id, bert_model_2.parameters()))
bert_params_dict += bert_params_dict_2
base_params = filter(lambda p: id(p) not in bert_params_dict, model.parameters())
optimizer_grouped_parameters = [
{"params": [p for p in base_params if p.requires_grad]},
{"params": [p for p in bert_model.parameters() if p.requires_grad], "lr": self.args.bert_lr}
]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=self.args.bert_lr, weight_decay=self.args.l2reg)
else:
_params = filter(lambda p: p.requires_grad, self.model.parameters())
optimizer = torch.optim.Adam(_params, lr=self.args.glove_learning_rate, weight_decay=self.args.l2reg)
return optimizer
def _print_args(self):
n_trainable_params, n_nontrainable_params = 0, 0
for p in self.model.parameters():
n_params = torch.prod(torch.tensor(p.shape)).item()
if p.requires_grad:
n_trainable_params += n_params
else:
n_nontrainable_params += n_params
print('n_trainable_params: {0}, n_nontrainable_params: {1}'.format(n_trainable_params, n_nontrainable_params))
print('> training arguments:')
for arg in vars(self.args):
print('>>> {0}: {1}'.format(arg, getattr(self.args, arg)))
def run(self):
_params = filter(lambda p: p.requires_grad, self.model.parameters())
optimizer = self.get_bert_optimizer(self.model) # 获得bert的优化器
max_test_acc_overall = 0 # 全局的最大正确率
max_f1_overall = 0 # 最大f1值
max_test_acc, max_f1, model_path = self._train(optimizer, max_test_acc_overall) # 把损失函数和优化器一起传入训练,返回最大正确率和f1值
print('max_test_acc: {0}, max_f1: {1}'.format(max_test_acc, max_f1))
max_test_acc_overall = max(max_test_acc, max_test_acc_overall)
max_f1_overall = max(max_f1, max_f1_overall)
torch.save(self.best_model.state_dict(), model_path) # torch保存最终结果
print('>> saved: {}'.format(model_path))
print('#' * 60)
print('max_test_acc_overall:{}'.format(max_test_acc_overall))
print('max_f1_overall:{}'.format(max_f1_overall))
self._test()