-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibRoCGAN.py
943 lines (759 loc) · 35.8 KB
/
libRoCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
import datetime
import copy
import json
import numpy as np
import os
import torch
import random
import pickle
import h5py
import torch.nn as nn
from torch.autograd import Variable
from torch.autograd import grad as torch_grad
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
def init_pytorch_cuda(gpu_mode, verbose=False):
'''
Test if pytorch use CUDA. Return type and device
'''
#if (verbose):
# print('pytorch version', torch.__version__)
dtypef = torch.FloatTensor
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if verbose:
if torch.cuda.is_available():
print('CUDA is available')
else:
print('CUDA is *NOT* available')
if (gpu_mode == 'auto'):
if (torch.cuda.is_available()):
dtypef = torch.cuda.FloatTensor
elif (gpu_mode == 'true'):
if (torch.cuda.is_available()):
dtypef = torch.cuda.FloatTensor
else:
print('Error GPU mode not available')
exit(0)
else:
device = torch.device('cpu');
if (verbose):
if (str(device) != 'cpu'):
#print('GPU is enabled')
#print('CUDA version: ', torch.version.cuda)
#print('CUDA device counts: ', torch.cuda.device_count())
#print('CUDA current device: ', torch.cuda.current_device())
n = torch.cuda.current_device()
#print('CUDA device name: ', torch.cuda.get_device_name(n))
#print('CUDA device ad: ', torch.cuda.device(n))
else:
#print('CPU only (no GPU)')
pass
return dtypef, device
def get_min_max_constraints(params):
'''
Compute the min/max values per dimension according to params['keys'] and params['constraints']
'''
# clamp take normalisation into account
x_dim = params['x_dim']
keys = params['keys']
ckeys = params['constraints']
cmin = np.ones((1, x_dim)) * -9999 # FIXME min value
cmax = np.ones((1, x_dim)) * 9999 # FIXME max value
for k,v in ckeys.items():
try:
index = keys.index(k)
cmin[0,index] = v[0]
cmax[0,index] = v[1]
except:
continue
x_std = params['x_std']
x_mean = params['x_mean']
cmin = (cmin-x_mean)/x_std
cmax = (cmax-x_mean)/x_std
######################################################################
######################################################################
cn = len(params['cond_keys'].split())
cmin = cmin[:,0:x_dim - cn]
cmax = cmax[:,0:x_dim - cn]
######################################################################
######################################################################
return cmin, cmax
def load(filename, gpu_mode='auto', verbose=False):
'''
Load a GAN-PHSP
Output params = dict with all parameters
Output G = Generator network
Output optim = dict with information of the training process
'''
dtypef, device = init_pytorch_cuda(gpu_mode, verbose)
if (str(device) == 'cpu'):
nn = torch.load(filename, map_location=lambda storage, loc: storage)
else:
nn = torch.load(filename)
# get elements
params = nn['params']
if not 'optim' in nn:
optim = nn['model'] ## FIXME compatibility --> to remove
else:
optim = nn['optim']
G_state = nn['g_model_state']
D_state = nn['d_model_state']
# create the Generator
cmin, cmax = get_min_max_constraints(params)
cmin = torch.from_numpy(cmin).type(dtypef)
cmax = torch.from_numpy(cmax).type(dtypef)
G = GeneratorTransformer(params, cmin, cmax)
D = DiscriminatorTransformer(params)
if (str(device) != 'cpu'):
G.cuda()
D.cuda()
params['current_gpu'] = True
else:
params['current_gpu'] = False
G.load_state_dict(G_state)
D.load_state_dict(D_state)
return params, G, D, optim, dtypef
def generate_samples2(params, G, n, batch_size=-1, normalize=False, to_numpy=False,cond=None):
z_dim = params['z_dim']
if params['current_gpu']:
dtypef = torch.cuda.FloatTensor
else:
dtypef = torch.FloatTensor
batch_size = int(batch_size)
if batch_size == -1:
batch_size = int(n)
to_numpy = True
if batch_size>n:
batch_size = int(n)
###########################################################
###########################################################
xmean = params["x_mean"]
xstd = params["x_std"]
xn = params['x_dim']
cn = len(params['cond_keys'].split())
ncond = cn
xmeanc = xmean[xn - cn:xn]
xstdc = xstd[xn - cn:xn]
xmeannc = xmean[0:xn - cn]
xstdnc = xstd[0:xn - cn]
cond = (cond - xmeanc) / xstdc
photon_dim = params['x_dim'] - len(params['cond_keys'].split())
######################################################################
######################################################################
m = 0
z_dim = params['z_dim']
x_dim = params['x_dim']
rfake = np.empty((0,x_dim-cn))
while m < n:
z = Variable(torch.randn(batch_size, z_dim)).type(dtypef)
dum = Variable(torch.randn(batch_size, photon_dim)).type(dtypef)
######################################################################
######################################################################
condx = Variable(torch.from_numpy(cond[m:m + batch_size])).type(dtypef).view(batch_size, cn)
z = torch.cat((z.float(), condx.float()), dim=1)
######################################################################
######################################################################
fake,_,_,_ = G(z,dum)
# put back to cpu to allow concatenation
fake = fake.cpu().data.numpy()
rfake = np.concatenate((rfake, fake), axis=0)
m = m+batch_size
if m+batch_size>n:
batch_size = n-m
if not normalize:
x_mean = params['x_mean']
x_std = params['x_std']
######################################################################
######################################################################
x_mean = xmeannc
x_std = xstdnc
######################################################################
######################################################################
rfake = (rfake*x_std)+x_mean
if to_numpy:
return rfake
return Variable(torch.from_numpy(rfake)).type(dtypef)
def sliced_wasserstein(x, y, l, p=1):
l = int(l)
ndim = len(x[0])
if ndim == 1:
d = wasserstein1D(x, y, p)
d = d.data.cpu().numpy()
return d
dtypef = torch.FloatTensor
if x.is_cuda:
dtypef = torch.cuda.FloatTensor
l_batch_size = int(1e2)
l_current = 0
d = 0
while l_current<l:
# directions: matrix [ndim X l]
directions = np.random.randn(ndim, l_batch_size)
directions /= np.linalg.norm(directions, axis=0)
# send to gpu if possible
directions = torch.from_numpy(directions).type(dtypef)
# Projection (Radon) x = [n X ndim], px = [n X L]
px = torch.matmul(x,directions)
py = torch.matmul(y,directions)
# sum wasserstein1D over all directions
for i in range(l_batch_size):
lx = px[:,i]
ly = py[:,i]
d += wasserstein1D(lx, ly, p)
l_current += l_batch_size
if l_current+l_batch_size>l:
l_batch_size = l-l_current
d = torch.pow(d/l, 1/p)
d = d.data.cpu().numpy()
return d
def wasserstein1D(x, y, p=1):
sx, indices = torch.sort(x)
sy, indices = torch.sort(y)
z = (sx-sy)
return torch.sum(torch.pow(torch.abs(z), p))/len(z)
class Discriminator(nn.Module):
'''
Discriminator: D(x, θD) -> probability that x is real data
or with Wasserstein GAN :
Discriminator is the Critic D(x, θD) -> Wasserstein distance
The discriminator takes in both real and fake input data and returns
probabilities, a number between 0 and 1, with 1 representing a prediction
of authenticity and 0 representing fake.
At Nash equilibrium, half of input will be real, half fake: D(x) = 1/2
'''
def __init__(self, params):
super(Discriminator, self).__init__()
self.params = params
x_dim = params['x_dim']
d_dim = params['d_dim']
self.d_layers = params['d_layers']
self.wasserstein = (params['type'] == 'wasserstein') or (params['type'] == 'gradient_penalty')
self.map1 = nn.Linear(x_dim, d_dim)
self.maps = nn.ModuleList()
self.norms = nn.ModuleList()
self.activ = F.relu
if 'leaky_relu' in params:
self.activ = F.leaky_relu
for i in range(self.d_layers):
self.maps.append(nn.Linear(d_dim,d_dim))
self.norms.append(nn.LayerNorm(d_dim))
self.map3 = nn.Linear(d_dim, 1)
def forward(self, x):
x = self.activ(self.map1(x))
if self.params['layer_norm'] == True:
for i in range(self.d_layers):
x = self.activ(self.norms[i](self.maps[i](x)))
else:
for i in range(self.d_layers):
x = self.activ(self.maps[i](x))
if (self.wasserstein):
# NO SIGMOID with Wasserstein
# https://paper.dropbox.com/doc/Wasserstein-GAN--AZxqBJuXjF5jf3zyCdJAVqEMAg-GvU0p2V9ThzdwY3BbhoP7
x = self.map3(x)
else:
x = torch.sigmoid(self.map3(x)) # sigmoid needed to output probabilities 0-1
return x
class Generator(nn.Module):
'''
Generator: G(z, θG) -> x fake samples
Create samples that are intended to come from the same distrib than the
training dataset. May have several z input at different layers.
'''
def __init__(self, params, cmin, cmax):
super(Generator, self).__init__()
self.params = params
########################################################################################################
########################################################################################################
z_dim = self.params['z_dim'] + len(self.params['cond_keys'].split())
self.x_dim = self.params['x_dim'] - len(self.params['cond_keys'].split())
#print('Generator',z_dim,self.x_dim,cmin,cmax)
########################################################################################################
########################################################################################################
g_dim = self.params['g_dim']
self.g_layers = self.params['g_layers']
self.cmin = cmin
self.cmax = cmax
self.map1 = nn.Linear(z_dim, g_dim)
self.maps = nn.ModuleList()
for i in range(self.g_layers):
self.maps.append(nn.Linear(g_dim, g_dim))
self.map3 = nn.Linear(g_dim, self.x_dim)
self.activ = F.relu
if 'leaky_relu' in params:
self.activ = F.leaky_relu
# initialisation
for p in self.parameters():
if p.ndimension()>1:
nn.init.kaiming_normal_(p) ## seems better ???
#nn.init.xavier_normal_(p)
#nn.init.kaiming_uniform_(p, nonlinearity='sigmoid')
def forward(self, x):
#print('Generator in',x.shape)
x = self.activ(self.map1(x))
for i in range(self.g_layers-1):
x = self.activ(self.maps[i](x))
x = self.maps[self.g_layers-1](x) # last one
x = torch.sigmoid(x) # to output probability within [0-1]
#x = self.activ(x)
x = self.map3(x)
# clamp values
#print('Generator forward',x.shape,self.cmin,self.cmax)
x = torch.max(x, self.cmin)
x = torch.min(x, self.cmax)
#print('Generator out',x.shape)
return x
class Generator_RoCGAN(nn.Module):
'''
Generator: G(z, θG) -> x fake samples
Create samples that are intended to come from the same distrib than the
training dataset. May have several z input at different layers.
'''
def __init__(self, params, cmin, cmax):
super(Generator_RoCGAN, self).__init__()
self.params = params
########################################################################################################
########################################################################################################
z_dim = self.params['z_dim'] + len(self.params['cond_keys'].split())
self.x_dim = self.params['x_dim'] - len(self.params['cond_keys'].split())
#print('Generator',z_dim,self.x_dim,cmin,cmax)
########################################################################################################
########################################################################################################
g_dim = self.params['g_dim']
self.g_layers = self.params['g_layers']
self.cmin = cmin
self.cmax = cmax
self.map1_en = nn.Linear(z_dim, g_dim)
self.map1_au = nn.Linear(self.x_dim, g_dim)
self.maps_enc = nn.ModuleList()
self.maps_au = nn.ModuleList()
self.maps_dec = nn.ModuleList()
for i in range(self.g_layers//2):
self.maps_enc.append(nn.Linear(g_dim, g_dim))
self.maps_au.append(nn.Linear(g_dim, g_dim))
self.maps_dec.append(nn.Linear(g_dim, g_dim))
self.map3 = nn.Linear(g_dim, self.x_dim)
self.activ = F.relu
if 'leaky_relu' in params:
self.activ = F.leaky_relu
# initialisation
for p in self.parameters():
if p.ndimension()>1:
nn.init.kaiming_normal_(p) ## seems better ???
#nn.init.xavier_normal_(p)
#nn.init.kaiming_uniform_(p, nonlinearity='sigmoid')
def forward(self, x, y):
#print('Generator in',x.shape)
x = self.activ(self.map1_en(x))
y = self.activ(self.map1_au(y))
for i in range(self.g_layers//2):
x = self.activ(self.maps_enc[i](x))
y = self.activ(self.maps_au[i](y))
dumx = x
dumy = y
for i in range(self.g_layers//2):
x = self.activ(self.maps_dec[i](x))
y = self.activ(self.maps_dec[i](y))
x = self.map3(x)
y = self.map3(y)
# clamp values
#print('Generator forward',x.shape,self.cmin,self.cmax)
x = torch.max(x, self.cmin)
x = torch.min(x, self.cmax)
y = torch.max(y, self.cmin)
y = torch.min(y, self.cmax)
#print('Generator out',x.shape)
return x, y, dumx, dumy
class HDF5DatasetGenerator:
def __init__(self, dbPath, batchSize):
self.batchSize = batchSize
self.db = h5py.File(dbPath,'r')
self.numParticles = self.db["particles"].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.numParticles-self.batchSize, self.batchSize):
particles = self.db["particles"][i: i + self.batchSize]
yield particles
epochs += 1
def close(self):
self.db.close()
class Gan(object):
'''
Main GAN object
- Input params = dict with all parameters
- Input x = input dataset
'''
def __init__(self, params):
'''
Create a Gan object from params and samples x
'''
# parameters from the dataset
self.params = params
# init gpu
self.dtypef, self.device = init_pytorch_cuda(self.params['gpu_mode'], True)
# main dataset
trainGen = HDF5DatasetGenerator(self.params['training_filename'], self.params['batch_size'])
self.gen = trainGen.generator()
self.params['training_size'] = trainGen.numParticles
# init G and D parameters
x_dim = params['x_dim']
g_dim = params['g_dim']
d_dim = params['d_dim']
z_dim = params['z_dim']
g_layers = params['g_layers']
d_layers = params['d_layers']
x_std = params['x_std']
x_mean = params['x_mean']
self.wasserstein_loss = (params['type'] == 'wasserstein') or (params['type'] == 'gradient_penalty')
#################################################################
self.AUloss = torch.nn.MSELoss()
self.LATloss = torch.nn.MSELoss()
#################################################################
if 'dump_wasserstein_every' not in self.params:
self.params['dump_wasserstein_every'] = -1
if 'w_n' not in self.params:
self.params['w_n'] = int(1e4)
if 'w_l' not in self.params:
self.params['w_l'] = int(1e2)
if 'w_p' not in self.params:
self.params['w_p'] = 1
print('w', self.params['dump_wasserstein_every'], self.params['w_n'], self.params['w_l'], self.params['w_p'])
# clamp take normalisation into account
cmin, cmax = get_min_max_constraints(params)
cmin = torch.from_numpy(cmin).type(self.dtypef)
cmax = torch.from_numpy(cmax).type(self.dtypef)
# init G and D
if ('start_pth' not in self.params) or (params['start_pth'] == None):
self.D = Discriminator(params)
self.G = Generator_RoCGAN(params, cmin, cmax)
else:
f = params['start_pth']
print('Loading ', f)
start_params, start_G, start_D, start_optim, start_dtypef = load(f)
self.D = start_D
self.G = start_G
# init optimizer
d_learning_rate = params['d_learning_rate']
g_learning_rate = params['g_learning_rate']
if (params['optimiser'] == 'adam'):
g_weight_decay = float(params["g_weight_decay"])
d_weight_decay = float(params["d_weight_decay"])
print('Optimizer regularisation L2 G weight:', g_weight_decay)
print('Optimizer regularisation L2 D weight:', d_weight_decay)
if "beta1" in params["beta_1"]:
beta1 = float(params["beta_1"])
beta2 = float(params["beta_2"])
else:
beta1 = 0.9
beta2 = 0.999
self.d_optimizer = torch.optim.Adam(self.D.parameters(),
weight_decay=d_weight_decay,
betas=[beta1,beta2],
lr=d_learning_rate)
self.g_optimizer = torch.optim.Adam(self.G.parameters(),
weight_decay=g_weight_decay,
betas=[beta1,beta2],
lr=g_learning_rate)
if (params['optimiser'] == 'RMSprop'):
self.d_optimizer = torch.optim.RMSprop(self.D.parameters(), lr=d_learning_rate)
self.g_optimizer = torch.optim.RMSprop(self.G.parameters(), lr=g_learning_rate)
# auto decreasing learning_rate
# self.g_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.g_optimizer,
# 'min', verbose=True, patience=200)
# self.d_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.d_optimizer,
# 'min', verbose=True, patience=200)
# criterion init
if (str(self.device) != 'cpu'):
self.G.cuda()
self.D.cuda()
self.criterion = nn.BCELoss().cuda()
else:
self.criterion = nn.BCELoss()
# nb of weights
d_param = filter(lambda p: p.requires_grad, self.D.parameters())
params['d_nb_weights'] = sum([np.prod(p.size()) for p in d_param])
g_param = filter(lambda p: p.requires_grad, self.G.parameters())
params['g_nb_weights'] = sum([np.prod(p.size()) for p in g_param])
print('Number of parameters for D :', params['d_nb_weights'])
print('Number of parameters for G :', params['g_nb_weights'])
''' ----------------------------------------------------------------------------- '''
def train(self):
'''
Train the GAN
'''
# get mean/std of input data for normalisation
# self.x_mean = np.mean(self.x, 0, keepdims=True)
# self.x_std = np.std(self.x, 0, keepdims=True)
# self.params['x_mean'] = self.x_mean
# self.params['x_std'] = self.x_std
# self.x = (self.x-self.x_mean)/self.x_std
self.x_mean = self.params['x_mean']
self.x_std = self.params['x_std']
# save optim epoch values
optim = {}
optim['g_loss'] = []
optim['d_loss'] = []
optim['d_loss_real'] = []
optim['d_loss_fake'] = []
optim['g_model_state'] = []
optim['current_epoch'] = []
optim['w_value'] = []
optim['w_epoch'] = []
optim['validation_d_loss_real'] = []
optim['validation_d_loss_fake'] = []
optim['validation_d_loss'] = []
optim['validation_g_loss'] = []
optim['validation_epoch'] = []
si = 0 # nb of stored epoch
# Real/Fake labels (1/0)
self.batch_size = self.params['batch_size']
batch_size = self.batch_size
real_labels = Variable(torch.ones(batch_size, 1)).type(self.dtypef)
fake_labels = Variable(torch.zeros(batch_size, 1)).type(self.dtypef)
# One-sided label smoothing
if ('label_smoothing' in self.params):
s = self.params['label_smoothing']
real_labels = Variable((1.0-s)+s*torch.rand(batch_size, 1)).type(self.dtypef)
fake_labels = Variable(s*torch.rand(batch_size, 1)).type(self.dtypef)
########################################################################################################
########################################################################################################
condn = len(self.params['cond_keys'].split())
nx = self.params['x_dim']
########################################################################################################
########################################################################################################
# Start training
epoch = 0
start = datetime.datetime.now()
z_dim = self.params['z_dim']
while (epoch < self.params['epoch']):
for batch_idx, data in enumerate(self.gen):
#print(batch_idx,epoch)
data = torch.from_numpy(data).float()
# Clamp D if wasserstein mode (not in gradient_penalty mode)
if (self.params['type'] == 'wasserstein'):
clamp_lower = self.params['clamp_lower']
clamp_upper = self.params['clamp_upper']
for p in self.D.parameters():
p.data.clamp_(clamp_lower, clamp_upper)
# the input data
x = Variable(data).type(self.dtypef)
###################################################################
###################################################################
condx = x[:, nx - condn:nx]
photonx = x[:, : nx - condn]
###################################################################
###################################################################
# PART 1 : D
for _ in range(self.params['d_nb_update']):
# the input data
#x = Variable(data).type(self.dtypef)
# get decision from the discriminator
d_real_decision = self.D(x)
# compute loss BCELoss between decision and vector of ones (y_real_)
if (self.wasserstein_loss):
d_real_loss = -torch.mean(d_real_decision)
else:
d_real_loss = self.criterion(d_real_decision, real_labels)
# generate z noise (latent)
z = Variable(torch.randn(batch_size, z_dim)).type(self.dtypef)
########################################################################################################
########################################################################################################
z = torch.cat((z.float(), condx.float()), dim=1)
########################################################################################################
########################################################################################################
# generate fake data
# (detach to avoid training G on these labels (?))
d_fake_data,_,_,_ = self.G(z,photonx)
d_fake_data = d_fake_data.detach()
########################################################################################################
########################################################################################################
d_fake_data = torch.cat((d_fake_data.float(), condx.float()), dim=1)
########################################################################################################
########################################################################################################
# get the fake decision on the fake data
d_fake_decision = self.D(d_fake_data)
# compute loss between fake decision and vector of zeros
if (self.wasserstein_loss):
d_fake_loss = torch.mean(d_fake_decision)
else:
d_fake_loss = self.criterion(d_fake_decision, fake_labels)
# FIXME NOT OK for non-saturating version ? -> BCE is negative
# sum of loss
if (self.params['type'] == 'gradient_penalty'):
gradient_penalty = self.compute_gradient_penalty(x, d_fake_data)
d_loss = d_real_loss + d_fake_loss + self.params['gp_weight']*gradient_penalty
else:
d_loss = d_real_loss + d_fake_loss
# backprop + optimize
self.D.zero_grad()
d_loss.backward()
self.d_optimizer.step()
# PART 2 : G
for _ in range(self.params['g_nb_update']):
# generate z noise (latent)
z = Variable(torch.randn(batch_size, z_dim)).type(self.dtypef)
######################################################################
######################################################################
z = torch.cat((z.float(), condx.float()), dim=1)
######################################################################
######################################################################
# generate the fake data
g_fake_data,reconstructed_data,lat_fake,lat_real = self.G(z,photonx)
######################################################################
######################################################################
g_fake_data = torch.cat((g_fake_data.float(), condx.float()), dim=1)
######################################################################
######################################################################
# get the fake decision
g_fake_decision = self.D(g_fake_data)
# compute loss
if (self.wasserstein_loss):
g_loss = -torch.mean(g_fake_decision)
else:
# this is the non-saturated version (see Fedus2018)
# loss is BCE(D(G(z), 1)) instead of
# non-saturated : BCE(D(G(z), 1)) = -1/2 E_z[log(D(G(z)))]
# minmax : -BCE(D(G(z)), 0) = E_z[log(1-D(G(z)))]
g_loss = self.criterion(g_fake_decision, real_labels)
g_loss += self.params['au_weight'] * self.AUloss(photonx,reconstructed_data)
g_loss += self.params['lat_weight'] * self.LATloss(lat_fake,lat_real)
# Backprop + Optimize
g_loss.backward()
self.g_optimizer.step()
# Housekeeping
self.D.zero_grad() # FIXME not needed ?
self.G.zero_grad() # FIXME to put before g backward ?
# print info sometimes
if (epoch) % 500 == 0:
f = open('log.txt','at')
print('Epoch %d d_loss: %.5f g_loss: %.5f d_real_loss: %.5f d_fake_loss: %.5f'
%(epoch,
d_loss.data.item(),
g_loss.data.item(),
d_real_loss.data.item(),
d_fake_loss.data.item()),file=f)
f.close()
torch.save(self.G.state_dict(), 'Gen_' + self.params['model_name'])
torch.save(self.D.state_dict(), 'Dis_' + self.params['model_name'])
with open(self.params['params_name'], 'wb') as tf:
pickle.dump(self.params,tf)
# save loss value
optim['d_loss_real'].append(d_real_loss.data.item())
optim['d_loss_fake'].append(d_fake_loss.data.item())
optim['d_loss'].append(d_loss.data.item())
optim['g_loss'].append(g_loss.data.item())
# dump sometimes
if (epoch>self.params['dump_epoch_start']):
should_dump1 = (epoch-self.params['dump_epoch_start']) % self.params['dump_epoch_every']
should_dump1 = (should_dump1 == 0)
should_dump2 = self.params['epoch']-epoch < self.params['dump_last_n_epoch']
if should_dump1 or should_dump2:
state = copy.deepcopy(self.G.state_dict())
optim['g_model_state'].append(state)
optim['current_epoch'].append(epoch)
si = si+1
# compute wasserstein distance sometimes
dwe = self.params['dump_wasserstein_every']
if (dwe >0) and (epoch % dwe == 0):
n = int(self.params['w_n'])
l = int(self.params['w_l'])
p = int(self.params['w_p'])
real = next(iter(loader_w))
real = Variable(real).type(self.dtypef)
z = Variable(torch.randn(n, z_dim)).type(self.dtypef)
fake = self.G(z)
d = sliced_wasserstein(real, fake, l, p)
optim['w_value'].append(d)
optim['w_epoch'].append(epoch)
print('Epoch {} wasserstein: {:5f}'.format(epoch, d))
# compute loss on validation dataset sometimes
"""
vdfn = self.params['validation_filename']
vde = self.params['validation_every_epoch']
if (vdfn != None) and (epoch % vde == 0):
with torch.set_grad_enabled(False):
data_v = next(iter(loader_validation)) ## FIXME SLOW ??? better if num_workers=2
xx = Variable(data_v).type(self.dtypef)
dv_real_decision = self.D(xx).detach()
if (self.wasserstein_loss):
dv_real_loss = -torch.mean(dv_real_decision)
else:
dv_real_loss = self.criterion(dv_real_decision, real_labels)
zz = Variable(torch.randn(batch_size, z_dim)).type(self.dtypef)
dv_fake_data = self.G(zz).detach()
dv_fake_decision = self.D(dv_fake_data).detach()
if (self.wasserstein_loss):
dv_fake_loss = torch.mean(dv_fake_decision)
else:
dv_fake_loss = self.criterion(dv_fake_decision, fake_labels)
if (self.params['type'] == 'gradient_penalty'):
gradient_penalty = self.compute_gradient_penalty(xx, dv_fake_data)
dv_loss = dv_real_loss + dv_fake_loss + self.params['gp_weight']*gradient_penalty
else:
dv_loss = dv_real_loss + dv_fake_loss
# G
zz = Variable(torch.randn(batch_size, z_dim)).type(self.dtypef)
gv_fake_data = self.G(zz).detach()
gv_fake_decision = self.D(gv_fake_data).detach()
if (self.wasserstein_loss):
gv_loss = -torch.mean(gv_fake_decision)
else:
gv_loss = self.criterion(gv_fake_decision, real_labels)
optim['validation_d_loss_real'].append(dv_real_loss.data.item())
optim['validation_d_loss_fake'].append(dv_fake_loss.data.item())
optim['validation_d_loss'].append(dv_loss.data.item())
optim['validation_g_loss'].append(gv_loss.data.item())
optim['validation_epoch'].append(epoch)
print('Epoch {} validation: G {:5f} vs {:5f} '
.format(epoch, g_loss.data.item(), gv_loss.data.item()))
#break
"""
# update loop
epoch += 1
# should we stop ?
if (epoch > self.params['epoch']):
break
# end of training
stop = datetime.datetime.now()
print('Training completed epoch = ', epoch)
print('Duration time = ', (stop-start))
return optim
''' ----------------------------------------------------------------------------- '''
def compute_gradient_penalty(self, real_data, fake_data):
#https://github.com/EmilienDupont/wgan-gp/blob/master/training.py
#https://github.com/caogang/wgan-gp/blob/master/gan_toy.py
gpu = (str(self.device) != 'cpu')
# alpha
alpha = torch.rand(self.batch_size, 1)#, 1, 1)
alpha = alpha.expand_as(real_data)
if gpu:
alpha = alpha.cuda()
# interpolated
interpolated = alpha * real_data + (1 - alpha) * fake_data
interpolated = Variable(interpolated, requires_grad=True)
if gpu:
interpolated = interpolated.cuda()
# Calculate probability of interpolated examples
prob_interpolated = self.D(interpolated)
# gradient
gradients = torch_grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(prob_interpolated.size()).cuda() if gpu else torch.ones(
prob_interpolated.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
# norm
#LAMBDA = .1 # Smaller lambda seems to help for toy tasks specifically
#gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Two sides penalty
#gradient_penalty = ((gradients_norm - 1) ** 2).mean()
# one side penalty
a = torch.max(gradients_norm - 1, torch.zeros_like(gradients_norm))
gradient_penalty = (a** 2).mean()
# one side gradient penalty
# replace
# E((|∇f(αx_real −(1−α)x_fake)|−1)²)
# by
# (max(|∇f|−1,0))²
#
return gradient_penalty
''' ----------------------------------------------------------------------------- '''