-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainCGAN.py
70 lines (42 loc) · 1.3 KB
/
trainCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# coding: utf-8
import json
import numpy as np
import os
import torch
import random
import pickle
import sys
from libRoCGAN import *
def normalizacja(filename):
f = open(filename,'rt')
lines = f.readlines()
f.close()
mean = list(map(float,lines[0].split()))
std = list(map(float,lines[1].split()))
mean = np.asarray(mean,dtype = np.float32)
std = np.asarray(std,dtype = np.float32)
return mean,std
#############################################################################
json_filename = 'config_001.json'
param_file = open(json_filename).read()
params = json.loads(param_file)
if params['validation_filename'] == 'None':
params['validation_filename'] = None
if params['start_pth'] == 'None':
params['start_pth'] = None
params['x_dim'] = len(params['keys'].split())
# normalisation
params['x_mean'],params['x_std'] = normalizacja(params["normalization_data_file"])
# print parameters
for item in params.items():
print(item)
#check_input_params(params)
# train
print('Building the GAN model ...')
gan = Gan(params)
optim = gan.train()
torch.save(gan.G.state_dict(), 'Gen_' + params['model_name'])
torch.save(gan.D.state_dict(), 'Dis_' + params['model_name'])
with open(params['params_name'], 'wb') as tf:
pickle.dump(params,tf)