-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgenerate.py
98 lines (78 loc) · 4.79 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
import logging
import math
import os
import torch
import torch.nn as nn
from torch.serialization import default_restore_location
from termcolor import colored
from tqdm import tqdm
from captioner import models, utils
from captioner.data.dataset import CaptionDataset, BatchSampler
from captioner.data.dictionary import Dictionary
from captioner.generator import SequenceGenerator
def get_args():
parser = argparse.ArgumentParser('Caption Generation')
parser.add_argument('--seed', default=42, type=int, help='pseudo random number generator seed')
# Add data arguments
parser.add_argument('--data', default='data-bin', help='path to data directory')
parser.add_argument('--checkpoint-path', default='checkpoints/checkpoint_best.pt', help='path to the model file')
parser.add_argument('--max-tokens', default=16000, type=int, help='maximum number of tokens in a batch')
parser.add_argument('--batch-size', default=32, type=int, help='maximum number of sentences in a batch')
parser.add_argument('--num-workers', default=8, type=int, help='number of data workers')
# Add generation arguments
parser.add_argument('--beam-size', default=5, type=int, help='beam size')
parser.add_argument('--max-len', default=200, type=int, help='maximum length of generated sequence')
parser.add_argument('--stop-early', default='True', help='stop generation immediately after finalizing hypotheses')
parser.add_argument('--normalize_scores', default='True', help='normalize scores by the length of the output')
parser.add_argument('--len-penalty', default=1, type=float, help='length penalty: > 1.0 favors longer sentences')
parser.add_argument('--unk-penalty', default=0, type=float, help='unknown word penalty: >0 produces fewer unks')
parser.add_argument('--num-hypo', default=1, type=int, help='number of hypotheses to output')
return parser.parse_args()
def main(args):
# Load arguments from checkpoint
torch.manual_seed(args.seed)
state_dict = torch.load(args.checkpoint_path, map_location=lambda s, l: default_restore_location(s, 'cpu'))
args = argparse.Namespace(**{**vars(args), **vars(state_dict['args'])})
utils.init_logging(args)
# Load dictionary
dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt'))
logging.info('Loaded a dictionary of {} words'.format(len(dictionary)))
# Load dataset
test_dataset = CaptionDataset(os.path.join(args.data, 'test-tokens.p'), os.path.join(args.data, 'test-features'), dictionary)
logging.info('Created a test dataset of {} examples'.format(len(test_dataset)))
test_loader = torch.utils.data.DataLoader(
test_dataset, num_workers=args.num_workers, collate_fn=test_dataset.collater, pin_memory=True,
batch_sampler=BatchSampler(test_dataset, args.max_tokens, args.batch_size, shuffle=False, seed=args.seed))
# Build model
model = models.build_model(args, dictionary).cuda()
model.load_state_dict(state_dict['model'])
logging.info('Loaded a model from checkpoint {}'.format(args.checkpoint_path))
generator = SequenceGenerator(
model, dictionary, beam_size=args.beam_size, maxlen=args.max_len, stop_early=eval(args.stop_early),
normalize_scores=eval(args.normalize_scores), len_penalty=args.len_penalty, unk_penalty=args.unk_penalty,
)
progress_bar = tqdm(test_loader, desc='| Generation', leave=False)
for i, sample in enumerate(progress_bar):
sample = utils.move_to_cuda(sample)
with torch.no_grad():
hypos = generator.generate(sample['image_features'])
for i, (sample_id, hypos) in enumerate(zip(sample['id'].data, hypos)):
if sample['caption_tokens'] is not None:
target_tokens = sample['caption_tokens'].data[i, :]
target_tokens = target_tokens[target_tokens.ne(dictionary.pad_idx)].int().cpu()
target_str = dictionary.string(target_tokens)
print('T-{:<6}\t{}'.format(sample_id, colored(target_str, 'green')))
# Process top predictions
for i, hypo in enumerate(hypos[:min(len(hypos), args.num_hypo)]):
hypo_tokens = hypo['tokens'].int().cpu()
hypo_str = dictionary.string(hypo_tokens)
alignment = hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None
print('H-{:<6}\t{}'.format(sample_id, colored(hypo_str, 'blue')))
if hypo['positional_scores'] is not None:
print('P-{:<6}\t{}'.format(sample_id, ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist()))))
if alignment is not None:
print('A-{:<6}\t{}'.format(sample_id, ' '.join(map(lambda x: str(x.item()), alignment))))
if __name__ == '__main__':
args = get_args()
main(args)