-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
229 lines (199 loc) · 7.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from functools import partial
import sys, os
import argparse
import numpy as np
import math
import logging
import torch
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from dataset import dataset_dict
from model import build_model, optimizer_factory
from model.learningrate import adjust_learning_rate, get_learning_rates, print_num_parameters
from utils.training_utils import save_experiment_params, load_config
from utils.checkpoints import load_checkpoints, save_checkpoints, load_best_checkpoints, save_best_checkpoints
from utils.logger import StatsLogger, WandB
def main(argv):
parser = argparse.ArgumentParser(
description="Train a deformation networks"
)
parser.add_argument(
"config_file",
help="Path to the file that contains the experiment configuration"
)
parser.add_argument(
"--num_workers",
type=int,
default=0,
help="The number of processed spawned by the batch provider"
)
parser.add_argument(
"--num_threads",
type=int,
default=4,
help="The number of threads"
)
parser.add_argument(
"--seed",
type=int,
default=27,
help="Seed for the PRNG"
)
parser.add_argument(
"--continue_from_epoch",
default=0,
type=int,
help="Continue training from epoch (default=0)"
)
parser.add_argument(
"--best_val_loss",
type=float,
default=9999999999999,
help="The default value for the best val loss"
)
parser.add_argument(
"--with_wandb_logger",
action="store_true",
help="Use wandB for logging the training progress"
)
args = parser.parse_args(argv)
# Disable trimesh's logger
logging.getLogger("trimesh").setLevel(logging.ERROR)
# Set the random seed
np.random.seed(args.seed)
torch.manual_seed(np.random.randint(np.iinfo(np.int32).max))
if torch.cuda.is_available():
torch.cuda.manual_seed_all(np.random.randint(np.iinfo(np.int32).max))
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
print("Running code on", device)
# Parse the config file
config = load_config(args.config_file)
# Check if output directory exists and if it doesn't create it
output_directory = config["experiment"]["out_dir"]
if not os.path.exists(output_directory):
os.makedirs(output_directory)
# Create an experiment directory using the experiment_name
experiment_name = config["experiment"]["name"]
experiment_directory = os.path.join(
output_directory,
experiment_name
)
if not os.path.exists(experiment_directory):
os.makedirs(experiment_directory)
# Save the parameters of this run to a file
save_experiment_params(args, experiment_name, experiment_directory)
print("Save experiment statistics in {}".format(experiment_directory))
# Parser dataset
dataset_type = config['data']['type']
Dataset = dataset_dict[dataset_type]
train_dataset = Dataset(
config,
iden_split=config["training"]["iden_split"],
motion_split=config["training"]["motion_split"],
load_mesh=config["training"]["load_mesh"],
num_sampled_pairs=config["training"]["num_sampled_pairs"]
)
validation_dataset = Dataset(
config,
iden_split=config["validation"]["iden_split"],
motion_split=config["validation"]["motion_split"],
load_mesh=config["validation"]["load_mesh"],
num_sampled_pairs=config["validation"]["num_sampled_pairs"]
)
train_loader = DataLoader(
train_dataset,
batch_size=config["training"].get("batch_size", 16),
num_workers=args.num_workers,
collate_fn=train_dataset.collate_fn,
shuffle=True
)
print("Loaded {} training deformation pairs".format( len(train_dataset) ))
val_loader = DataLoader(
validation_dataset,
batch_size=config["validation"].get("batch_size", 1),
num_workers=args.num_workers,
collate_fn=validation_dataset.collate_fn,
shuffle=False
)
print("Loaded {} validation deformation pairs".format( len(validation_dataset) ))
# Get the weight file to initilize the networks before training
weight_file = config["training"].get("weight_file", None)
weight_forward_file = config["training"].get("weight_forward_file", None)
weight_backward_file = config["training"].get("weight_backward_file", None)
# Build the network architecture to be used for training
model, train_on_batch, validate_on_batch, _ = build_model(
config, weight_file, weight_forward_file, weight_backward_file, device=device
)
# Count trainable parameters.
print_num_parameters(model)
# Build an optimizer object to compute the gradients of the parameters
lr_scheduler, optimizer = optimizer_factory(config["training"], model.parameters())
# Load the checkpoints if they exist in the experiment directory
# Load the best_val_loss and the corresponding model
load_best_checkpoints(model, experiment_directory, args, device)
# Then load the latest model
load_checkpoints(model, optimizer, experiment_directory, args, device)
# Initialize the logger
if args.with_wandb_logger:
WandB.instance().init(
config,
model=model,
project=config["logger"].get(
"project", "NSDP"
),
name=experiment_name,
watch=False,
log_frequency=10
)
# Log the stats to a file
StatsLogger.instance().add_output_file(open(
os.path.join(experiment_directory, "stats.txt"),
"w"
))
epochs = config["training"].get("epochs", 1000)
save_every = config["training"].get("save_frequency", 20)
val_every = config["validation"].get("frequency", 10)
# Do the training
for i in range(args.continue_from_epoch, epochs):
# adjust learning rate
adjust_learning_rate(lr_scheduler, optimizer, i)
model.train()
for b, sample in enumerate(train_loader):
# Move everything to device
for k, v in sample.items():
sample[k] = v.to(device)
batch_loss = train_on_batch(model, optimizer, sample, config)
StatsLogger.instance().print_progress(i+1, b+1, batch_loss)
if (i % save_every) == 0:
save_checkpoints(
i,
model,
optimizer,
experiment_directory,
)
StatsLogger.instance().clear()
if i % val_every == 0 and i > 0:
print("====> Validation Epoch ====>")
model.eval()
for b, sample in enumerate(val_loader):
# Move everything to device
for k, v in sample.items():
sample[k] = v.to(device)
batch_loss = validate_on_batch(model, sample, config)
StatsLogger.instance().print_progress(-1, b+1, batch_loss)
val_loss_i = StatsLogger.instance()._loss.value
if val_loss_i < args.best_val_loss:
save_best_checkpoints(
i,
model,
experiment_directory,
val_loss_i,
)
args.best_val_loss = val_loss_i
StatsLogger.instance().clear()
print("====> Validation Epoch ====>")
if __name__ == "__main__":
main(sys.argv[1:])