-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimilarity.py
111 lines (96 loc) · 2.29 KB
/
similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
####
import math
import numpy as np
import scipy.spatial.distance as dist
from math import*
### Euclids Distance
def euclids(x,y):
"Euclids Distance "
sum=0;
for a,b in zip(x,y):
sum = sum + math.pow(a-b,2)
return math.sqrt(sum)
### Manhattan distance
def manhattan(x,y):
"Manhattan Distance "
sum=0;
for a,b in zip(x,y):
sum=sum + abs(a-b)
return sum
### Cosine Similarity
def cosine(x,y):
"Cosine Similarity "
sum = 0
for i in x:
sum = sum+ (i*i)
xs = math.sqrt(sum)
sum = 0
for i in y:
sum = sum+ (i*i)
ys = math.sqrt(sum)
sum=0;
for a,b in zip(x,y):
sum = sum + (a*b)
xop = sum
return xop / (xs*ys)
def MahalanobisDist(x, y):
"MahalanobisDist"
covariance_xy = np.cov(x, y, rowvar=0)
inv_covariance_xy = np.linalg.inv(covariance_xy)
xy_mean = np.mean(x), np.mean(y)
x_diff = np.array([x_i - xy_mean[0] for x_i in x])
y_diff = np.array([y_i - xy_mean[1] for y_i in y])
diff_xy = np.transpose([x_diff, y_diff])
md = []
for i in range(len(diff_xy)):
md.append(np.sqrt(np.dot(np.dot(np.transpose(diff_xy[i]), inv_covariance_xy), diff_xy[i])))
return md
#def jaccard(x,y):
# print 'hii'
def converttfidf(x,dictte):
"To convert vector to tf format "
from collections import Counter
a=[]
counts = Counter(x).values()
for i in x:
dictte[i] = dictte[i] + 1
for j in dictte.values():
a.append(j)
return a
#from nltk.tokenize import word_tokenize
#k=[]
#example=['Mary had a little lamb' , 'Jack went up the hill' , 'Jill followed suit' ,'i woke up suddenly','it was a really bad dream...']
#for i in example:
# k.append(word_tokenize(i))
def createdict(a,b):
"It is used to convert a , b to numeric vectors"
c = a+b
dict3 = {}
dict1 = {}
dict2 = {}
for i in c:
dict3[i] = 0
dict1[i] = 0
dict2[i] = 0
##print dict3
x=converttfidf(a,dict1)
y=converttfidf(b,dict2)
##print x
##print y
return x,y
def compare(a,b):
"Find Cosine similarity between 2 columns of a and b dataframe Code any be altered to include other similarity "
for i in a:
for j in b:
if(a[i].dtypes==b[j].dtypes):
x,y=createdict(a[i].tolist(),b[j].tolist())
g = cosine(x,y)
print '1st column is ',i,'2nd column is ',j ,' similarity is ', g
'''
import pandas as pd
a = pd.read_csv('bank.csv',delimiter=';')
b = pd.read_csv('iris.csv')
print a
print b
compare(a,b)
'''