-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrelembed_clustered.py
811 lines (715 loc) · 49.5 KB
/
relembed_clustered.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
"""
Relation Embed model
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
# class Config(object):
# """ A configuration object for the RelEmbed model
# Allows for extensible checking that model configurations are compatible,
# and easier syntax for initialization of RelEmbed
# """
# def __init__(max_num_steps,
# word_embed_size=200,
# dep_embed_size=25,
# pos_embed_size=25,
# pretrained_word_embeddings=None,
# pretrained_dep_embeddings=None,
# pretrained_pos_embeddings=None,
# hidden_layer_size=None,
# is_bidirectional=False,
# num_rnn_layers=1,
# rnn_type='GRU',
# ):
def batch_triple_inner(W, x, y, z):
""" Computes the inner product of 3 vectors and a tensor
Args:
W: a 3D tensor with shape[x_len, y_len, z_len]
x: a 2D tensor with shape[batch_size, x_len]
y: a 2D tensor with shape[batch_size, y_len]
y: a 2D tensor with shape[batch_size, z_len]
NOTE: Literally as naive as is possible"""
val = tf.zeros(tf.pack([tf.shape(x)[0], 1])) # get zeros to work with unknown size
for i in xrange(x.get_shape()[1]):
for j in xrange(y.get_shape()[1]):
for k in xrange(z.get_shape()[1]):
val += W[i,j,k]*x[:,i]*y[:,j]*z[:,k]
return val
class RelEmbed(object):
""" Encapsulation of the dependency RNN lang model
TODO:
Add configuration to classification styles:
- Softmax loss
- ranking loss
- hinge vs softplus
- margin size
- piecewise like in dos Santos?
- model 'Other' or not
- matmul inner product
vs element_wise inner product (equivalent to diagonal matmul)
vs single matrix (not class-wise inner product, but a column per class)
TODO: Add unit tests
- Classification scores
TODO: Add functions for pulling out weight matrices as np arrays
TODO: Add configuration for composition styles
- RNN vs GRU vs LSTM
- Forward or BiDirectional
- Number of layers
TODO: Add configuration for regularization
Unsupervised:
- L1 vs L2
- \lambda
Supervised:
- L1 vs L2
- \lambda
"""
def __init__(self, config):
self.config = config
self.max_num_steps = config['max_num_steps']
self.word_embed_size = config['word_embed_size']
self.dep_embed_size = config['dep_embed_size']
self.pos_embed_size = config['pos_embed_size']
self.num_clusters = config['num_clusters']
# self.hidden_layer_size = config['hidden_layer_size']
self.input_size = self.word_embed_size + self.dep_embed_size + self.pos_embed_size
self.bidirectional = config['bidirectional']
# self.hidden_size = 2 * self.word_embed_size #
self.hidden_size = config['hidden_size']
self.pretrained_word_embeddings = config['pretrained_word_embeddings'] # None if we don't provide them
if np.any(self.pretrained_word_embeddings):
assert self.word_embed_size == self.pretrained_word_embeddings.shape[1]
self.num_classes = config['num_predict_classes']
self.max_grad_norm = config['max_grad_norm']
self.vocab_size = config['vocab_size']
self.dep_vocab_size = config['dep_vocab_size']
self.pos_vocab_size = config['pos_vocab_size']
self.name = config['model_name']
self.checkpoint_prefix = config['checkpoint_prefix'] + self.name
self.summary_prefix = config['summary_prefix'] + self.name
self.initializer = tf.random_uniform_initializer(-1., 1.)
self.word_initializer = tf.truncated_normal_initializer(mean=0.0, stddev=1./(self.word_embed_size))
self.dep_initializer = tf.truncated_normal_initializer(mean=0.0, stddev=1./(self.dep_embed_size))
self.pos_initializer = tf.truncated_normal_initializer(mean=0.0, stddev=1./(self.pos_embed_size))
self.hidden_initializer = tf.truncated_normal_initializer(mean=0.0, stddev=1./(self.hidden_size))
with tf.name_scope(self.name):
with tf.name_scope("Forward"):
self._build_forward_graph()
if config['supervised']:
self._build_classification_graph()
with tf.name_scope("Backward"):
self._build_train_graph()
if config['supervised']:
self._build_class_train_graph()
with tf.name_scope("Nearby"):
self._build_similarity_graph()
self.saver = tf.train.Saver(tf.all_variables(), max_to_keep=config['max_to_keep'])
if config['interactive']:
self.session = tf.InteractiveSession()
else:
self.session = tf.Session()
self.session.run(tf.initialize_all_variables())
self.summary_writer = tf.train.SummaryWriter(self.summary_prefix, self.session.graph_def)
def save_validation_accuracy(self, new_score):
assign_op = self._valid_accuracy.assign(new_score)
_, summary = self.session.run([assign_op, self._valid_acc_summary])
self.summary_writer.add_summary(summary)
def _build_forward_graph(self):
# input tensor of zero padded indices to get to max_num_steps
# None allows for variable batch sizes
with tf.name_scope("Inputs"):
self._input_phrases = tf.placeholder(tf.int32, [None, self.max_num_steps, 3]) # [batch_size, w_{1:N}, 2]
self._input_targets = tf.placeholder(tf.int32, [None, 2]) # [batch_size, w_x]
self._input_labels = tf.placeholder(tf.int32, [None, 1]) # [batch_size, cluster_pair] \in num)clusters**2
self._input_lengths = tf.placeholder(tf.int32, [None, 1]) # [batch_size, N] (len of each sequence)
batch_size = tf.shape(self._input_lengths)[0]
self._keep_prob = tf.placeholder(tf.float32)
with tf.name_scope("Embeddings"):
if np.any(self.pretrained_word_embeddings):
self._word_embeddings = tf.Variable(self.pretrained_word_embeddings,name="word_embeddings")
self._left_target_embeddings = tf.Variable(self.pretrained_word_embeddings, name="left_target_embeddings")
self._right_target_embeddings = tf.Variable(self.pretrained_word_embeddings, name="right_target_embeddings")
else:
self._word_embeddings = tf.get_variable("word_embeddings",
[self.vocab_size, self.word_embed_size],
initializer=self.word_initializer,
dtype=tf.float32)
self._left_target_embeddings = tf.get_variable("left_target_embeddings",
[self.vocab_size, self.word_embed_size],
initializer=self.word_initializer,
dtype=tf.float32)
self._right_target_embeddings = tf.get_variable("right_target_embeddings",
[self.vocab_size, self.word_embed_size],
initializer=self.word_initializer,
dtype=tf.float32)
self._dependency_embeddings = tf.get_variable("dependency_embeddings",
[self.dep_vocab_size, self.dep_embed_size],
initializer=self.dep_initializer,
dtype=tf.float32)
self._pos_embeddings = tf.get_variable("pos_embeddings",
[self.pos_vocab_size, self.pos_embed_size],
initializer=self.pos_initializer,
dtype=tf.float32)
input_embeds = tf.nn.dropout(tf.nn.embedding_lookup(self._word_embeddings,
tf.slice(self._input_phrases, [0,0,0], [-1, -1, 1])),
keep_prob=self._keep_prob)
dep_embeds = tf.nn.dropout(tf.nn.embedding_lookup(self._dependency_embeddings,
tf.slice(self._input_phrases, [0,0,1], [-1, -1, 1])),
keep_prob=self._keep_prob)
pos_embeds = tf.nn.dropout(tf.nn.embedding_lookup(self._pos_embeddings,
tf.slice(self._input_phrases, [0,0,2], [-1, -1, 1])),
keep_prob=self._keep_prob)
### SEPARATE TARGET EMBEDDING MATRIX ###
# left_target_embeds = tf.nn.dropout(tf.nn.embedding_lookup(self._left_target_embeddings,
# tf.slice(self._input_targets, [0,0], [-1, 1])),
# keep_prob=self._keep_prob)
# right_target_embeds = tf.nn.dropout(tf.nn.embedding_lookup(self._right_target_embeddings,
# tf.slice(self._input_targets, [0,1], [-1, 1])),
# keep_prob=self._keep_prob)
# now delay dropout so we can tanh it first
# left_target_embeds = tf.nn.embedding_lookup(self._left_target_embeddings,
# tf.slice(self._input_targets, [0,0], [-1, 1]))
# right_target_embeds = tf.nn.embedding_lookup(self._right_target_embeddings,
# tf.slice(self._input_targets, [0,1], [-1, 1]))
### ALL SAME EMBEDDING MATRIX ###
left_target_embeds = tf.nn.embedding_lookup(self._word_embeddings,
tf.slice(self._input_targets, [0,0], [-1, 1]))
right_target_embeds = tf.nn.embedding_lookup(self._word_embeddings,
tf.slice(self._input_targets, [0,1], [-1, 1]))
# print(tf.slice(self._input_phrases, [0,0,1], [-1, -1, 1]).get_shape(), dep_embeds.get_shape())
# print(left_target_embeds.get_shape(), right_target_embeds.get_shape())
self._target_embeds = tf.squeeze(tf.concat(2, [left_target_embeds, right_target_embeds]), [1])
# self._target_embeds = tf.nn.dropout(tf.nn.l2_normalize(self._target_embeds, 1 ), keep_prob=self._keep_prob)
self._target_embeds = tf.nn.dropout(self._target_embeds, keep_prob=self._keep_prob)
# print(target_embeds.get_shape())
with tf.name_scope("RNN"):
# TODO: Make it multilevel
# self._initial_state = self.cell.zero_state(batch_size, tf.float32)
# print(self._initial_state.get_shape())
input_words = [ tf.squeeze(input_, [1, 2]) for input_ in tf.split(1, self.max_num_steps, input_embeds)]
input_deps = [ tf.squeeze(input_, [1, 2]) for input_ in tf.split(1, self.max_num_steps, dep_embeds)]
input_pos = [ tf.squeeze(input_, [1, 2]) for input_ in tf.split(1, self.max_num_steps, pos_embeds)]
inputs = [ tf.concat(1, [input_word, input_dep, input_pos_])
for (input_word, input_dep, input_pos_) in zip(input_words, input_deps, input_pos)]
# inputs = input_words # just use words
# start off with a basic configuration
if self.bidirectional:
self.fwcell = tf.nn.rnn_cell.GRUCell(self.hidden_size/2,
input_size=self.input_size)
self.bwcell = tf.nn.rnn_cell.GRUCell(self.hidden_size/2,
input_size=self.input_size)
outs = tf.nn.bidirectional_rnn(self.fwcell, self.bwcell, inputs,
sequence_length=tf.to_int64(tf.squeeze(self._input_lengths, [1])),
dtype=tf.float32)
# splice out the final forward and backward hidden states since apparently the documentation lies
# fw_state = tf.split(1, 2, outs[-1])[0]
# bw_state = tf.split(1, 2, outs[0])[1]
# state = tf.concat(1, [fw_state, bw_state])
state = outs[-1]
else:
self.cell = tf.nn.rnn_cell.BasicLSTMCell(self.hidden_size,
input_size=self.input_size)
# self.cell = tf.nn.rnn_cell.GRUCell(self.hidden_size,
# input_size=self.input_size)
_, state = tf.nn.rnn(self.cell, inputs,
sequence_length=tf.squeeze(self._input_lengths, [1]),
dtype=tf.float32)
# initial_state=self._initial_state)
# self._final_state = tf.nn.dropout(tf.nn.l2_normalize(state, 1), keep_prob= self._keep_prob)
self._final_state = tf.nn.dropout(state, keep_prob=self._keep_prob)
# get references to the RNN vars
# with tf.variable_scope('RNN', reuse=True):
# self._gate_matrix = tf.get_variable('GRUCell/Gates/Linear/Matrix')
# self._gate_bias = tf.get_variable('GRUCell/Gates/Linear/Bias')
# self._cand_matrix = tf.get_variable('GRUCell/Candidate/Linear/Matrix')
# self._cand_bias = tf.get_variable('GRUCell/Candidate/Linear/Bias')
# self._lambda2 = tf.Variable(10e-6, trainable=False, name="L2_Lambda2")
self._lambda = tf.Variable(10e-7, trainable=False, name="L2_Lambda")
with tf.name_scope("Loss"):
# self.cluster_input = tf.concat(1, [self._final_state, self._target_embeds])
self._cluster_input = self._final_state
### softmax with hidden layer ###
# hidden_layer_size = np.sqrt((self.word_embed_size)*self.num_clusters*self.num_clusters) #sqrt(in*out)
# self._c_hidden_w = tf.get_variable("c_hidden_w", [self._cluster_input.get_shape()[1], hidden_layer_size])
# self._c_hidden_b = tf.Variable(tf.zeros([hidden_layer_size], dtype=tf.float32), name="c_hidden_b")
# self._clusters_w = tf.get_variable("clusters_w", [hidden_layer_size, self.num_clusters**2])
# self._clusters_b = tf.Variable(tf.zeros([self.num_clusters**2], dtype=tf.float32), name="clusters_b")
# hidden_logits = tf.nn.dropout(tf.nn.tanh(tf.nn.xw_plus_b(self._cluster_input,
# self._c_hidden_w,
# self._c_hidden_b)),
# keep_prob=self._keep_prob)
# logits = tf.matmul(hidden_logits, self._clusters_w) + self._clusters_b
# self._xent = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits,
# tf.to_int64(tf.squeeze(self._input_labels, [1]))))
## just softmax ###
self._clusters_w = tf.get_variable("clusters_w", [self._cluster_input.get_shape()[1], self.num_clusters**2])
self._clusters_b = tf.Variable(tf.zeros([self.num_clusters**2], dtype=tf.float32), name="clusters_b")
logits = tf.matmul(self._cluster_input, self._clusters_w) + self._clusters_b
self._xent = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits,
tf.to_int64(tf.squeeze(self._input_labels, [1]))))
self._l2_penalty = self._lambda*(#tf.nn.l2_loss(self._gate_matrix)
# + tf.nn.l2_loss(self._gate_bias)
#+ tf.nn.l2_loss(self._cand_matrix)
#+ tf.nn.l2_loss(self._cand_bias)
#+
tf.nn.l2_loss(self._clusters_w)
+ tf.nn.l2_loss(self._clusters_b))
# + tf.nn.l2_loss(self._c_hidden_w)
# + tf.nn.l2_loss(self._c_hidden_b))
# + tf.nn.l2_loss(self._word_embeddings))
#+tf.nn.l2_loss(self._dependency_embeddings)
# tf.nn.l2_loss(self._left_target_embeddings)
# +tf.nn.l2_loss(self._right_target_embeddings))
# self._xent = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits,
# tf.to_float(self._input_labels)),
# name="neg_sample_loss")
self._loss = self._xent + self._l2_penalty
with tf.name_scope("Summaries"):
logit_mag = tf.histogram_summary("Logit_magnitudes", logits)
l2 = tf.scalar_summary("L2_penalty", self._l2_penalty)
target_embed_mag = tf.histogram_summary("Target_Embed_L2", tf.nn.l2_loss(self._target_embeds))
state_mag = tf.histogram_summary("RNN_final_state_L2", tf.nn.l2_loss(self._final_state))
self._penalty_summary = tf.merge_summary([logit_mag, l2, target_embed_mag, state_mag])
self._train_cost_summary = tf.merge_summary([tf.scalar_summary("Train_Loss", self._loss)])
self._valid_cost_summary = tf.merge_summary([tf.scalar_summary("Validation_Loss", self._loss)])
def _build_classification_graph(self):
with tf.name_scope("Classifier"):
self._class_lambda = tf.Variable(10e-3, trainable=False, name="Class_L2_Lambda")
self._softmax_input = tf.concat(1, [self._final_state, self._target_embeds], name="concat_input")
# self._softmax_input = self._final_state
### REGULAR SOFTMAX ###
### just softmax
self._score_w = tf.get_variable("score_w", [self._softmax_input.get_shape()[1], self.num_classes])
self._score_bias = tf.Variable(tf.zeros([self.num_classes], dtype=tf.float32), name="score_bias")
scores = tf.matmul(self._softmax_input, self._score_w) + self._score_bias
self._predictions = tf.argmax(scores, 1, name="predict")
self._predict_probs = tf.nn.softmax(scores, name="predict_probabilities")
### with a hidden layer
# hidden_layer_size = np.sqrt((self.hidden_size + 2*self.word_embed_size)*self.num_classes) #sqrt(in*out)
# self._hidden_w = tf.get_variable("hidden_w", [self._softmax_input.get_shape()[1], hidden_layer_size])
# self._hidden_b = tf.Variable(tf.zeros([hidden_layer_size], dtype=tf.float32), name="hidden_b")
# self._score_w = tf.get_variable("score_w", [hidden_layer_size, self.num_classes])
# self._score_bias = tf.Variable(tf.zeros([self.num_classes], dtype=tf.float32), name="scoring_b")
# hidden_logits = tf.nn.dropout(tf.nn.tanh(tf.nn.xw_plus_b(self._softmax_input,
# self._hidden_w,
# self._hidden_b)),
# keep_prob=self._keep_prob)
# scores = tf.nn.xw_plus_b(hidden_logits, self._score_w, self._score_bias)
# self._predictions = tf.argmax(scores, 1, name="predict")
# self._predict_probs = tf.nn.softmax(scores, name="predict_probabilities")
### WORKING DIAG TENSOR INNER PRODUCT 2.0 ###
# score(class c) = h^T * W_c * <w_x, w_y>
# self.ws = [ tf.get_variable("score_w_"+str(i), [self.hidden_size])
# for i in range(self.num_classes) ]
# scores = tf.concat(1,
# [ tf.reduce_sum(tf.mul(self._final_state, tf.mul(w, self._target_embeds)),
# 1, keep_dims=True)
# for w in self.ws ] )
# print(scores.get_shape())
# self._predictions = tf.argmax(scores, 1, name="predict")
# self._predict_probs = tf.nn.softmax(scores, name="predict_probabilities")
## WORKING FULL TENSOR BILINEAR PRODUCT W/ LINEAR COMPONENT AND BIAS ###
# self.ws = [ tf.get_variable("score_w_"+str(i), [self.hidden_size, self.hidden_size])
# for i in range(self.num_classes) ]
# self.score_w = tf.get_variable("score_w", [self._softmax_input.get_shape()[1], self.num_classes])
# self.score_bias = tf.Variable(tf.zeros([self.num_classes], dtype=tf.float32), name="score_b")
# scores = (tf.concat(1,
# [ tf.squeeze( tf.batch_matmul( # [ batch x 1 x 1] -> [ batch x 1 ]
# tf.expand_dims(self._final_state, [1]), # [ batch x 1 x hidden ]
# tf.expand_dims( # [ batch x hidden x 1 ]
# tf.matmul(self._target_embeds, w), # [ batch x hidden ]
# [2])),
# [2])
# for w in self.ws ])
# + tf.matmul(self._softmax_input, self.score_w)
# + self.score_bias)
# ## DO A TRANSFORM ON h ALSO ##
# self.hs = [ tf.get_variable("score_h_"+str(i), [self.hidden_size, self.hidden_size])
# for i in range(self.num_classes) ]
# scores = tf.concat(1,
# [ tf.squeeze( tf.batch_matmul( # [ batch x 1 x 1] -> [ batch x 1 ]
# tf.expand_dims( # [ batch x hidden x 1 ]
# tf.matmul(self._final_state, h), # [ batch x hidden ]
# [1]),
# tf.expand_dims( # [ batch x hidden x 1 ]
# tf.matmul(self._target_embeds, w), # [ batch x hidden ]
# [2])),
# [2])
# for h, w in zip(self.hs, self.ws) ])
# print(scores.get_shape())
# self._predictions = tf.argmax(scores, 1, name="predict")
# self._predict_probs = tf.nn.softmax(scores, name="predict_probabilities")
### TENSOR TRIPLE PRODUCT ###
# left_target, right_target = tf.split(1, 2, self._target_embeds)
# self.ws = [ tf.get_variable("score_w_"+str(i), [self.hidden_size, self.word_embed_size, self.word_embed_size])
# for i in range(self.num_classes) ]
# # # self.hs = [ tf.get_variable("score_h_"+str(i), [self.hidden_size, self.hidden_size])
# # # for i in range(self.num_classes) ]
# self.score_bias = tf.Variable(tf.zeros([self.num_classes], dtype=tf.float32), name="score_b")
# # # scores = tf.concat(1,
# # # [ tf.squeeze( tf.batch_matmul( # [ batch x 1 x 1] -> [ batch x 1 ]
# # # tf.expand_dims(self._final_state, [1]), # [ batch x 1 x hidden ]
# # # tf.expand_dims( # [ batch x hidden x 1 ]
# # # tf.matmul(self._target_embeds, w), # [ batch x hidden ]
# # # [2])),
# # # [2])
# # # for w in self.ws ])
# scores = (tf.concat(1,
# [ tf.expand_dims(batch_triple_inner(w,
# self._final_state,
# left_target,
# right_target),
# [1])
# # tf.squeeze( tf.batch_matmul( # [ batch x 1 x 1] -> [ batch x 1 ]
# # tf.expand_dims( # [ batch x hidden x 1 ]
# # tf.matmul(self._final_state, h), # [ batch x hidden ]
# # [1]),
# # tf.expand_dims( # [ batch x hidden x 1 ]
# # tf.matmul(self._target_embeds, w), # [ batch x hidden ]
# # [2])),
# # [2])
# for w in self.ws ])
# )#+ self.score_bias)
# # scores += self.score_bias
# # print(scores.get_shape())
# self._predictions = tf.argmax(scores, 1, name="predict")
# self._predict_probs = tf.nn.softmax(scores, name="predict_probabilities")
with tf.name_scope("Loss"):
self._class_labels = tf.placeholder(tf.int64, [None, 1])
# self._class_xent = tf.nn.sparse_softmax_cross_entropy_with_logits(class_logits,
# tf.squeeze(self._class_labels, [1]))
### SOFTMAX CROSS ENTROPY ###
self._class_xent = tf.nn.sparse_softmax_cross_entropy_with_logits(scores,
tf.squeeze(self._class_labels, [1]))
self._avg_class_loss = tf.reduce_mean(self._class_xent)
### MARGIN RANKING BASED ###
self._class_l2 = self._class_lambda*(tf.nn.l2_loss(self._score_w)
+ tf.nn.l2_loss(self._score_bias))
# self._class_l2 += self._lambda*(tf.nn.l2_loss(self._gate_matrix)
# + tf.nn.l2_loss(self._gate_bias)
# + tf.nn.l2_loss(self._cand_matrix)
# + tf.nn.l2_loss(self._cand_bias))
# + tf.nn.l2_loss(self._hidden_w)
# + tf.nn.l2_loss(self._hidden_b))
# self._class_l2 = self._class_lambda*(tf.nn.l2_loss(self._scoring_w)
# + tf.nn.l2_loss(self._scoring_b)
# + tf.nn.l2_loss(self._hidden_w)
# + tf.nn.l2_loss(self._hidden_b))
# self._class_l2 = self._class_lambda*( tf.add_n([tf.nn.l2_loss(w) for w in self.ws])
# + tf.nn.l2_loss(self.score_w)
# # + tf.add_n([tf.nn.l2_loss(h) for h in self.hs])
# + tf.nn.l2_loss(self.score_bias))
self._class_loss = self._avg_class_loss + self._class_l2
with tf.name_scope("Summaries"):
class_l2 = tf.scalar_summary("Classify_L2_penalty", self._class_l2)
class_xent = tf.scalar_summary("Avg_Xent_Loss", self._avg_class_loss)
target_embed_mag = tf.histogram_summary("Class_Target_Embed_L2", tf.nn.l2_loss(self._target_embeds))
state_mag = tf.histogram_summary("Class_RNN_final_state_L2", tf.nn.l2_loss(self._final_state))
self._class_penalty_summary = tf.merge_summary([class_l2, class_xent, target_embed_mag, state_mag])
self._train_class_loss_summary = tf.merge_summary([tf.scalar_summary("Train_Avg_Class_Xent", self._avg_class_loss)])
self._valid_class_loss_summary = tf.merge_summary([tf.scalar_summary("Valid_Avg_Class_Xent", self._avg_class_loss)])
def _build_train_graph(self):
with tf.name_scope("Unsupervised_Trainer"):
self._global_step = tf.Variable(0, name="global_step", trainable=False)
# self._lr = tf.Variable(1.0, trainable=False)
self._optimizer = tf.train.AdamOptimizer(.001)
# clip and apply gradients
grads_and_vars = self._optimizer.compute_gradients(self._loss)
# for gv in grads_and_vars:
# print(gv, gv[1] is self._cost)
clipped_grads_and_vars = [(tf.clip_by_norm(gv[0], self.max_grad_norm), gv[1])
for gv in grads_and_vars if gv[0] is not None] # clip_by_norm doesn't like None
with tf.name_scope("Summaries"):
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
self._grad_summaries = tf.merge_summary(grad_summaries)
self._train_op = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self._global_step)
def _build_class_train_graph(self):
with tf.name_scope("Classification_Trainer"):
self._class_global_step = tf.Variable(0, name="class_global_step", trainable=False)
# self._lr = tf.Variable(1.0, trainable=False)
self._class_optimizer = tf.train.AdamOptimizer(.001)
# clip and apply gradients
grads_and_vars = self._class_optimizer.compute_gradients(self._class_loss)
# for gv in grads_and_vars:
# print(gv, gv[1] is self._cost)
clipped_grads_and_vars = [(tf.clip_by_norm(gv[0], self.max_grad_norm), gv[1])
for gv in grads_and_vars if gv[0] is not None] # clip_by_norm doesn't like None
with tf.name_scope("Summaries"):
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.histogram_summary("class_{}/grad/hist".format(v.name), g)
sparsity_summary = tf.scalar_summary("class_{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
self._class_grad_summaries = tf.merge_summary(grad_summaries)
self._class_train_op = self._class_optimizer.apply_gradients(clipped_grads_and_vars,
global_step=self._class_global_step)
def _build_similarity_graph(self):
tf.get_variable_scope().reuse_variables()
with tf.name_scope("Inputs"):
# word or phrase we want similarities for
# self._query_word = tf.placeholder(tf.int32, [1], name="q_word")
self._query_phrase = tf.placeholder(tf.int32, [self.max_num_steps, 3], name="q_phrase")
self._query_length = tf.placeholder(tf.int32, [1], name="q_len") # lengths for RNN
self._query_target = tf.placeholder(tf.int32, [1,2], name="q_target")
# words and phrases to compute similarities over
# self._sim_words = tf.placeholder(tf.int32, [None, 1])
self._sim_phrases = tf.placeholder(tf.int32, [None, self.max_num_steps, 3])
self._sim_lengths = tf.placeholder(tf.int32, [None, 1]) # lengths for RNN
self._sim_targets = tf.placeholder(tf.int32, [None, 2])
sim_size = tf.shape(self._sim_lengths)[0]
with tf.name_scope("Embeddings"):
query_phrase_embed = tf.nn.embedding_lookup(self._word_embeddings,
tf.slice(self._query_phrase, [0,0], [-1, 1]))
query_dep_embed = tf.nn.embedding_lookup(self._dependency_embeddings,
tf.slice(self._query_phrase, [0,1], [-1, 1]))
query_pos_embed = tf.nn.embedding_lookup(self._pos_embeddings,
tf.slice(self._query_phrase, [0,2], [-1, 1]))
q_left_target_embed = tf.nn.embedding_lookup(self._left_target_embeddings,
tf.slice(self._query_target, [0,0], [-1, 1]))
q_right_target_embed = tf.nn.embedding_lookup(self._right_target_embeddings,
tf.slice(self._query_target, [0,1], [-1, 1]))
q_target_embed = tf.squeeze(tf.concat(2, [q_left_target_embed, q_right_target_embed]), [1])
# query_word_embed = tf.nn.embedding_lookup(self._word_embeddings, self._query_word)
# query_phrase_embed = tf.nn.embedding_lookup(self._word_embeddings, self._query_phrase)
# sim_word_embed = tf.nn.embedding_lookup(self._word_embeddings, tf.squeeze(self._sim_words, [1]))
sim_phrase_embed = tf.nn.embedding_lookup(self._word_embeddings,
tf.slice(self._sim_phrases, [0, 0, 0], [-1, -1, 1]))
sim_dep_embed = tf.nn.embedding_lookup(self._dependency_embeddings,
tf.slice(self._sim_phrases, [0, 0, 1], [-1, -1, 1]))
sim_pos_embed = tf.nn.embedding_lookup(self._pos_embeddings,
tf.slice(self._sim_phrases, [0, 0, 2], [-1, -1, 1]))
sim_left_target_embeds = tf.nn.embedding_lookup(self._left_target_embeddings,
tf.slice(self._sim_targets, [0,0], [-1, 1]))
sim_right_target_embeds = tf.nn.embedding_lookup(self._right_target_embeddings,
tf.slice(self._sim_targets, [0,1], [-1, 1]))
sim_target_embeds = tf.squeeze(tf.concat(2, [sim_left_target_embeds, sim_right_target_embeds]), [1])
with tf.name_scope("RNN"):
# compute rep of a query phrase
query_phrase = [tf.squeeze(qw, [1]) for qw in tf.split(0, self.max_num_steps, query_phrase_embed)]
query_dep = [tf.squeeze(qd, [1]) for qd in tf.split(0, self.max_num_steps, query_dep_embed)]
query_pos = [tf.squeeze(qd, [1]) for qd in tf.split(0, self.max_num_steps, query_pos_embed)]
# print(query_phrase[0].get_shape(), query_dep[0].get_shape())
query_input = [ tf.concat(1, [qw, qd, qp]) for (qw, qd, qp) in zip(query_phrase, query_dep, query_pos)]
# just words
# query_input = query_phrase
if self.bidirectional:
outs = tf.nn.bidirectional_rnn(self.fwcell, self.bwcell, query_input,
sequence_length=tf.to_int64(self._query_length),
dtype=tf.float32)
# splice out the final forward and backward hidden states since apparently the documentation lies
fw_state = tf.split(1, 2, outs[-1])[0]
bw_state = tf.split(1, 2, outs[0])[1]
query_phrase_state = tf.concat(1, [fw_state, bw_state])
else:
_, query_phrase_state = tf.nn.rnn(self.cell, query_input,
sequence_length=tf.to_int64(self._query_length),
dtype=tf.float32)
# compute reps of similarity phrases
sim_phrases = [tf.squeeze(qw, [1,2]) for qw in tf.split(1, self.max_num_steps, sim_phrase_embed)]
sim_deps = [tf.squeeze(qd, [1,2]) for qd in tf.split(1, self.max_num_steps, sim_dep_embed)]
sim_pos = [tf.squeeze(qp, [1,2]) for qp in tf.split(1, self.max_num_steps, sim_pos_embed)]
sim_input = [ tf.concat(1, [qw, qd, qp]) for (qw, qd, qp) in zip(sim_phrases, sim_deps, sim_pos)]
#jsut words
# sim_input = sim_phrases
if self.bidirectional:
outs = tf.nn.bidirectional_rnn(self.fwcell, self.bwcell, sim_input,
sequence_length=tf.to_int64(tf.squeeze(self._sim_lengths, [1])),
dtype=tf.float32)
# splice out the final forward and backward hidden states since apparently the documentation lies
fw_state = tf.split(1, 2, outs[-1])[0]
bw_state = tf.split(1, 2, outs[0])[1]
sim_phrase_states = tf.concat(1, [fw_state, bw_state])
else:
_, sim_phrase_states = tf.nn.rnn(self.cell, sim_input,
sequence_length=tf.to_int64(tf.squeeze(self._sim_lengths, [1])),
dtype=tf.float32)
with tf.name_scope("Similarities"):
with tf.name_scope("Normalize"):
# query_phrase = tf.nn.l2_normalize(tf.concat(1, [query_phrase_state, q_target_embed]), 1)
query_phrase = tf.nn.l2_normalize(query_phrase_state, 1)
# query_word = tf.nn.l2_normalize(query_word_embed, 1)
# sim_phrases = tf.nn.l2_normalize(tf.concat(1, [sim_phrase_states, sim_target_embeds]), 1)
sim_phrases = tf.nn.l2_normalize(sim_phrase_states, 1)
# sim_word = tf.nn.l2_normalize(sim_word_embed, 1)
with tf.name_scope("Calc_distances"):
# do for words
# print(q)
# query_word_nearby_dist = tf.matmul(query_word, sim_word, transpose_b=True)
# qw_nearby_val, qw_nearby_idx = tf.nn.top_k(query_word_nearby_dist, min(1000, self.vocab_size))
# self.qw_nearby_val = tf.squeeze(qw_nearby_val)
# self.qw_nearby_idx = tf.squeeze(qw_nearby_idx)
# self.qw_nearby_words = tf.squeeze(tf.gather(self._sim_words, qw_nearby_idx))
# do for phrases
query_phrase_nearby_dist = tf.matmul(query_phrase, sim_phrases, transpose_b=True)
qp_nearby_val, qp_nearby_idx = tf.nn.top_k(query_phrase_nearby_dist, min(1000, sim_size))
# self.sanity_check = tf.squeeze(tf.matmul(query_phrase, query_phrase, transpose_b=True))
self.qp_nearby_val = tf.squeeze(qp_nearby_val)
self.qp_nearby_idx = tf.squeeze(qp_nearby_idx)
# self.qp_nearby_lens = tf.squeeze(tf.gather(self._sim_lengths, qp_nearby_idx))
def partial_class_fit(self, input_phrases, input_targets, class_labels, input_lengths, keep_prob=.5):
"""Fit a mini-batch
Expects a batch_x: [self.batch_size, self.max_num_steps]
batch_y: the same
batch_seq_lens: [self.batch_size]
Returns average batch perplexity
"""
loss, _, g_summaries, c_summary, p_summary = self.session.run([self._class_loss, self._class_train_op,
self._class_grad_summaries,
self._train_class_loss_summary,
self._class_penalty_summary],
{self._input_phrases:input_phrases,
self._input_targets:input_targets,
self._class_labels:class_labels,
self._input_lengths:input_lengths,
self._keep_prob:keep_prob})
self.summary_writer.add_summary(g_summaries)
self.summary_writer.add_summary(c_summary)
self.summary_writer.add_summary(p_summary)
return loss
def partial_unsup_fit(self, input_phrases, input_targets, input_labels, input_lengths, keep_prob=.5):
"""Fit a mini-batch
Expects a batch_x: [self.batch_size, self.max_num_steps]
batch_y: the same
batch_seq_lens: [self.batch_size]
Returns average batch perplexity
"""
loss, _, g_summaries, c_summary, p_summary = self.session.run([self._loss, self._train_op,
self._grad_summaries,
self._train_cost_summary,
self._penalty_summary],
{self._input_phrases:input_phrases,
self._input_targets:input_targets,
self._input_labels:input_labels,
self._input_lengths:input_lengths,
self._keep_prob:keep_prob})
self.summary_writer.add_summary(g_summaries)
self.summary_writer.add_summary(c_summary)
self.summary_writer.add_summary(p_summary)
return loss
def validation_loss(self, valid_phrases, valid_targets, valid_labels, valid_lengths):
"""Calculate loss on validation inputs, but don't run trainer"""
loss, v_summary = self.session.run([self._loss, self._valid_cost_summary],
{self._input_phrases:valid_phrases,
self._input_targets:valid_targets,
self._input_labels:valid_labels,
self._input_lengths:valid_lengths,
self._keep_prob:1.0})
self.summary_writer.add_summary(v_summary)
return loss
def validation_class_loss(self, valid_phrases, valid_targets, valid_labels, valid_lengths):
"""Calculate loss on validation inputs, but don't run trainer"""
loss, v_summary = self.session.run([self._avg_class_loss, self._valid_class_loss_summary],
{self._input_phrases:valid_phrases,
self._input_targets:valid_targets,
self._class_labels:valid_labels,
self._input_lengths:valid_lengths,
self._keep_prob:1.0})
self.summary_writer.add_summary(v_summary)
return loss
def validation_phrase_nearby(self, q_phrase, q_phrase_len, q_target, sim_phrases, sim_phrase_lens, sim_targets):
"""Return nearby phrases from the similarity set
"""
nearby_vals, nearby_idx = self.session.run([self.qp_nearby_val, self.qp_nearby_idx],
{self._query_phrase:q_phrase,
self._query_length:q_phrase_len,
self._query_target:q_target,
self._sim_phrases:sim_phrases,
self._sim_lengths:sim_phrase_lens,
self._sim_targets:sim_targets,
self._keep_prob:1.0})
# print("Sanity check: %r" % sanity)
return nearby_vals, nearby_idx
def embed_phrases_and_targets(self, phrases, targets, lengths):
phrase_reps, target_reps = self.session.run([self._final_state, self._target_embeds],
{ self._input_phrases:phrases,
self._input_targets:targets,
self._input_lengths:lengths,
self._keep_prob:1.0})
return phrase_reps, target_reps
# def validation_word_nearby(self, q_word, sim_words):
# """Return nearby phrases from the similarity set
# """
# nearby_vals, nearby_idx = self.session.run([self.qw_nearby_val,
# self.qw_nearby_idx],
# {self._query_word:q_word,
# self._sim_words:sim_words})
# return nearby_vals, nearby_idx
def predict(self, paths, targets, path_lens, return_probs=False):
if return_probs:
predictions, distributions = self.session.run([self._predictions, self._predict_probs],
{self._input_phrases:paths,
self._input_targets:targets,
self._input_lengths:path_lens,
self._keep_prob:1.0})
distributions = distributions.reshape([path_lens.shape[0], -1])
#predictions are 2d array w/ one col
return list(predictions), list(distributions)
else:
predictions = self.session.run(self._predictions,
{self._input_phrases:paths,
self._input_targets:targets,
self._input_lengths:path_lens,
self._keep_prob:1.0})
return list(predictions)
def checkpoint(self):
if self.config['supervised']:
save_name = (self.checkpoint_prefix + '.ckpt-'+str(self._global_step.eval())+'-'+str(self._class_global_step.eval()))
else:
save_name = (self.checkpoint_prefix + '.ckpt-'+str(self._global_step.eval()))
print("Saving model to file: %s" % save_name)
self.saver.save(self.session, save_name)
return save_name
def restore(self, model_ckpt_path):
self.saver.restore(self.session, model_ckpt_path)
def restore_unsupervised(self, model_ckpt_path):
""" Restore the unsupervised components from another RNN"""
# create a new one with the same configuration
name = model_ckpt_path.split('/')[1].split('-')[0].split('.')[0]
config = self.config
print('name: ', name)
config['model_name'] = name
config['interactive'] = False
config['supervised'] = False
# get the outer RNN vars
# with tf.variable_scope('RNN/GRUCell/Gates/Linear', reuse=True):
# gate_matrix = tf.get_variable('Matrix')
# gate_bias = tf.get_variable('Bias')
# with tf.variable_scope('RNN/GRUCell/Candidate/Linear', reuse=True):
# cand_matrix = tf.get_variable('Matrix')
# cand_bias = tf.get_variable('Bias')
# use a new graph
g = tf.Graph()
with g.as_default():
unsup = RelEmbed(config)
unsup.restore(model_ckpt_path)
# for op in g.get_operations():
# print(op.name)
self._word_embeddings.assign(unsup.session.run(unsup._word_embeddings))
self._dependency_embeddings.assign(unsup.session.run(unsup._dependency_embeddings))
self._pos_embeddings.assign(unsup.session.run(unsup._pos_embeddings))
self._left_target_embeddings.assign(unsup.session.run(unsup._left_target_embeddings))
self._right_target_embeddings.assign(unsup.session.run(unsup._right_target_embeddings))
# do the RNN linear vars
# tf.get_variable_scope().reuse_variables()
self._gate_matrix.assign(unsup.session.run(unsup._gate_matrix))
self._gate_bias.assign(unsup.session.run(unsup._gate_bias))
self._cand_matrix.assign(unsup.session.run(unsup._cand_matrix))
self._cand_bias.assign(unsup.session.run(unsup._cand_bias))
unsup.session.close()
del unsup
def random_restart_score_weights(self):
random_w = np.random.uniform(low=-1., high=1.0, size=(self.hidden_size + 2*self.word_embed_size, self.num_classes))
zero_bias = np.zeros(self.num_classes)
self.session.run([self._score_w.assign(random_w),
self._score_bias.assign(zero_bias)])
def __repr__(self):
return ("<DPNN: W:%i, D:%i, P:%i H:%i, V:%i>"
% (self.word_embed_size, self.dep_embed_size, self.pos_embed_size,
self.hidden_size, self.vocab_size))