-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathindex.html
114 lines (97 loc) · 3.34 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!--
Copyright 2018 Google LLC. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================
-->
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="../shared/tfjs-examples.css" />
<style>
.negativeWeight {
color: #cc0000;
}
.positiveWeight {
color: #00aa00;
}
#buttons {
margin-top: 20px;
padding: 5px;
}
#oneHidden {
border-left: 1px solid #ededed;
border-right: 1px solid #ededed;
}
#linear,
#oneHidden,
#twoHidden {
padding: 5px;
}
</style>
</head>
<body>
<div class='tfjs-example-container centered-container'>
<section class='title-area'>
<h1>Multivariate Regression</h1>
<p class='subtitle'>Compare different models for housing price prediction.</p>
</section>
<section>
<p class='section-head'>Description</p>
<p>
This example shows you how to perform regression with more than one input feature using the
<a href="https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html">Boston Housing Dataset</a>,
which is a famous dataset derived from information collected by the U.S. Census Service concerning housing
in the area of Boston Massachusetts.
</p>
<p>
It allows you to compare the performance of 3 different models for predicting the house prices. When training
the linear model, it will also display the largest 5 weights (by absolute value) of the model and
the feature associated with each of those weights.
</p>
</section>
<section>
<p class='section-head'>Status</p>
<p id="status">Loading data...</p>
<p id="baselineStatus">Baseline not computed...</p>
</section>
<section>
<p class='section-head'>Training Progress</p>
<div class="with-cols">
<div id="linear">
<div class="chart"></div>
<div class="status"></div>
<div id="modelInspectionOutput">
<p id="inspectionHeadline"></p>
<table id="myTable"></table>
</div>
</div>
<div id="oneHidden">
<div class="chart"></div>
<div class="status"></div>
</div>
<div id="twoHidden">
<div class="chart"></div>
<div class="status"></div>
</div>
</div>
<div id="buttons">
<div class="with-cols">
<button id="simple-mlr">Train Linear Regressor</button>
<button id="nn-mlr-1hidden">Train Neural Network Regressor (1 hidden layer)</button>
<button id="nn-mlr-2hidden">Train Neural Network Regressor (2 hidden layers)</button>
</div>
</div>
</section>
</div>
<script type="module" src="index.js"></script>
</body>
</html>