-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathdata.js
343 lines (313 loc) · 12.5 KB
/
data.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Data object for Jena Weather data.
*
* The data used in this demo is the
* [Jena weather archive
* dataset](https://www.kaggle.com/pankrzysiu/weather-archive-jena).
*
* This file is used to load the Jena weather data in both
* - the browser: see [index.js](./index.js), and
* - the Node.js backend environment: see [train-rnn.js](./train-rnn.js).
*/
import * as tf from '@tensorflow/tfjs';
const LOCAL_JENA_WEATHER_CSV_PATH = './jena_climate_2009_2016.csv';
const REMOTE_JENA_WEATHER_CSV_PATH =
'https://storage.googleapis.com/learnjs-data/jena_climate/jena_climate_2009_2016.csv';
/**
* A class that fetches and processes the Jena weather archive data.
*
* It also provides a method to create a function that iterates over
* batches of training or validation data.
*/
export class JenaWeatherData {
constructor() {}
/**
* Load and preprocess data.
*
* This method first tries to load the data from `LOCAL_JENA_WEATHER_CSV_PATH`
* (a relative path) and, if that fails, will try to load it from a remote
* URL (`JENA_WEATHER_CSV_PATH`).
*/
async load() {
let response;
try {
response = await fetch(LOCAL_JENA_WEATHER_CSV_PATH);
} catch (err) {}
if (response != null &&
(response.statusCode === 200 || response.statusCode === 304)) {
console.log('Loading data from local path');
} else {
response = await fetch(REMOTE_JENA_WEATHER_CSV_PATH);
console.log(
`Loading data from remote path: ${REMOTE_JENA_WEATHER_CSV_PATH}`);
}
const csvData = await response.text();
// Parse CSV file.
const csvLines = csvData.split('\n');
// Parse header.
const columnNames = csvLines[0].split(',');
for (let i = 0; i < columnNames.length; ++i) {
// Discard the quotes around the column name.
columnNames[i] = columnNames[i].slice(1, columnNames[i].length - 1);
}
this.dateTimeCol = columnNames.indexOf('Date Time');
tf.util.assert(this.dateTimeCol === 0, `Unexpected date-time column index`);
this.dataColumnNames = columnNames.slice(1);
this.tempCol = this.dataColumnNames.indexOf('T (degC)');
tf.util.assert(this.tempCol >= 1, `Unexpected T (degC) column index`);
this.dateTime = [];
this.data = []; // Unnormalized data.
// Day of the year data, normalized between 0 and 1.
this.normalizedDayOfYear = [];
// Time of the day, normalized between 0 and 1.
this.normalizedTimeOfDay = [];
for (let i = 1; i < csvLines.length; ++i) {
const line = csvLines[i].trim();
if (line.length === 0) {
continue;
}
const items = line.split(',');
const parsed = this.parseDateTime_(items[0]);
const newDateTime = parsed.date;
if (this.dateTime.length > 0 &&
newDateTime.getTime() <=
this.dateTime[this.dateTime.length - 1].getTime()) {
}
this.dateTime.push(newDateTime);
this.data.push(items.slice(1).map(x => +x));
this.normalizedDayOfYear.push(parsed.normalizedDayOfYear);
this.normalizedTimeOfDay.push(parsed.normalizedTimeOfDay);
}
this.numRows = this.data.length;
this.numColumns = this.data[0].length;
this.numColumnsExcludingTarget = this.data[0].length - 1;
console.log(
`this.numColumnsExcludingTarget = ${this.numColumnsExcludingTarget}`);
await this.calculateMeansAndStddevs_();
}
/**
* Parse the date-time string from the Jena weather CSV file.
*
* @param {*} str The date time string with a format that looks like:
* "17.01.2009 22:10:00"
* @returns date: A JavaScript Date object.
* normalizedDayOfYear: Day of the year, normalized between 0 and 1.
* normalizedTimeOfDay: Time of the day, normalized between 0 and 1.
*/
parseDateTime_(str) {
const items = str.split(' ');
const dateStr = items[0];
const dateStrItems = dateStr.split('.');
const day = +dateStrItems[0];
const month = +dateStrItems[1] - 1; // month is 0-based in JS `Date` class.
const year = +dateStrItems[2];
const timeStrItems = items[1].split(':');
const hours = +timeStrItems[0];
const minutes = +timeStrItems[1];
const seconds = +timeStrItems[2];
const date = new Date(Date.UTC(year, month, day, hours, minutes, seconds));
const yearOnset = new Date(year, 0, 1);
const normalizedDayOfYear =
(date - yearOnset) / (366 * 1000 * 60 * 60 * 24);
const dayOnset = new Date(year, month, day);
const normalizedTimeOfDay = (date - dayOnset) / (1000 * 60 * 60 * 24)
return {date, normalizedDayOfYear, normalizedTimeOfDay};
}
/**
* Calculate the means and standard deviations of every column.
*
* TensorFlow.js is used for acceleration.
*/
async calculateMeansAndStddevs_() {
tf.tidy(() => {
// Instead of doing it on all columns at once, we do it
// column by column, as doing it all at once causes WebGL OOM
// on some machines.
this.means = [];
this.stddevs = [];
for (const columnName of this.dataColumnNames) {
// TODO(cais): See if we can relax this limit.
const data =
tf.tensor1d(this.getColumnData(columnName).slice(0, 6 * 24 * 365));
const moments = tf.moments(data);
this.means.push(moments.mean.dataSync());
this.stddevs.push(Math.sqrt(moments.variance.dataSync()));
}
console.log('means:', this.means);
console.log('stddevs:', this.stddevs);
});
// Cache normalized values.
this.normalizedData = [];
for (let i = 0; i < this.numRows; ++i) {
const row = [];
for (let j = 0; j < this.numColumns; ++j) {
row.push((this.data[i][j] - this.means[j]) / this.stddevs[j]);
}
this.normalizedData.push(row);
}
}
getDataColumnNames() {
return this.dataColumnNames;
}
getTime(index) {
return this.dateTime[index];
}
/** Get the mean and standard deviation of a data column. */
getMeanAndStddev(dataColumnName) {
if (this.means == null || this.stddevs == null) {
throw new Error('means and stddevs have not been calculated yet.');
}
const index = this.getDataColumnNames().indexOf(dataColumnName);
if (index === -1) {
throw new Error(`Invalid data column name: ${dataColumnName}`);
}
return {
mean: this.means[index], stddev: this.stddevs[index]
}
}
getColumnData(
columnName, includeTime, normalize, beginIndex, length, stride) {
const columnIndex = this.dataColumnNames.indexOf(columnName);
tf.util.assert(columnIndex >= 0, `Invalid column name: ${columnName}`);
if (beginIndex == null) {
beginIndex = 0;
}
if (length == null) {
length = this.numRows - beginIndex;
}
if (stride == null) {
stride = 1;
}
const out = [];
for (let i = beginIndex; i < beginIndex + length && i < this.numRows;
i += stride) {
let value = normalize ? this.normalizedData[i][columnIndex] :
this.data[i][columnIndex];
if (includeTime) {
value = {x: this.dateTime[i].getTime(), y: value};
}
out.push(value);
}
return out;
}
/**
* Get a data iterator function.
*
* @param {boolean} shuffle Whether the data is to be shuffled. If `false`,
* the examples generated by repeated calling of the returned iterator
* function will scan through range specified by `minIndex` and `maxIndex`
* (or the entire range of the CSV file if those are not specified) in a
* sequential fashion. If `true`, the examples generated by the returned
* iterator function will start from random rows.
* @param {number} lookBack Number of look-back time steps. This is how many
* steps to look back back when making a prediction. Typical value: 10 days
* (i.e., 6 * 24 * 10 = 1440).
* @param {number} delay Number of time steps from the last time point in the
* input features to the time of prediction. Typical value: 1 day (i.e.,
* 6 * 24 = 144).
* @param {number} batchSize Batch size.
* @param {number} step Number of steps between consecutive time points in the
* input features. This is a downsampling factor for the input features.
* Typical value: 1 hour (i.e., 6).
* @param {number} minIndex Optional minimum index to draw from the original
* data set. Together with `maxIndex`, this can be used to reserve a chunk
* of the original data for validation or evaluation.
* @param {number} maxIndex Optional maximum index to draw from the original
* data set. Together with `minIndex`, this can be used to reserve a chunk
* of the original data for validation or evaluation.
* @param {boolean} normalize Whether the iterator function will return
* normalized data.
* @param {boolean} includeDateTime Include the date-time features, including
* normalized day-of-the-year and normalized time-of-the-day.
* @return {Function} An iterator Function, which returns a batch of features
* and targets when invoked. The features and targets are arranged in a
* length-2 array, in the said order.
* The features are represented as a float32-type `tf.Tensor` of shape
* `[batchSize, Math.floor(lookBack / step), featureLength]`
* The targets are represented as a float32-type `tf.Tensor` of shape
* `[batchSize, 1]`.
*/
getNextBatchFunction(
shuffle, lookBack, delay, batchSize, step, minIndex, maxIndex, normalize,
includeDateTime) {
let startIndex = minIndex + lookBack;
const lookBackSlices = Math.floor(lookBack / step);
return {
next: () => {
const rowIndices = [];
let done = false; // Indicates whether the dataset has ended.
if (shuffle) {
// If `shuffle` is `true`, start from randomly chosen rows.
const range = maxIndex - (minIndex + lookBack);
for (let i = 0; i < batchSize; ++i) {
const row = minIndex + lookBack + Math.floor(Math.random() * range);
rowIndices.push(row);
}
} else {
// If `shuffle` is `false`, the starting row indices will be sequential.
let r = startIndex;
for (; r < startIndex + batchSize && r < maxIndex; ++r) {
rowIndices.push(r);
}
if (r >= maxIndex) {
done = true;
}
}
const numExamples = rowIndices.length;
startIndex += numExamples;
const featureLength =
includeDateTime ? this.numColumns + 2 : this.numColumns;
const samples = tf.buffer([numExamples, lookBackSlices, featureLength]);
const targets = tf.buffer([numExamples, 1]);
// Iterate over examples. Each example contains a number of rows.
for (let j = 0; j < numExamples; ++j) {
const rowIndex = rowIndices[j];
let exampleRow = 0;
// Iterate over rows in the example.
for (let r = rowIndex - lookBack; r < rowIndex; r += step) {
let exampleCol = 0;
// Iterate over features in the row.
for (let n = 0; n < featureLength; ++n) {
let value;
if (n < this.numColumns) {
value = normalize ? this.normalizedData[r][n] : this.data[r][n];
} else if (n === this.numColumns) {
// Normalized day-of-the-year feature.
value = this.normalizedDayOfYear[r];
} else {
// Normalized time-of-the-day feature.
value = this.normalizedTimeOfDay[r];
}
samples.set(value, j, exampleRow, exampleCol++);
}
const value = normalize ?
this.normalizedData[r + delay][this.tempCol] :
this.data[r + delay][this.tempCol];
targets.set(value, j, 0);
exampleRow++;
}
}
return {
value: {xs: samples.toTensor(), ys: targets.toTensor()},
done
};
}
};
}
}