-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathmodels.js
241 lines (226 loc) · 8.79 KB
/
models.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Creating and training `tf.LayersModel`s for the temperature prediction
* problem.
*
* This file is used to create models for both
* - the browser: see [index.js](./index.js), and
* - the Node.js backend environment: see [train-rnn.js](./train-rnn.js).
*/
import * as tf from '@tensorflow/tfjs';
import {JenaWeatherData} from './data';
// Row ranges of the training and validation data subsets.
const TRAIN_MIN_ROW = 0;
const TRAIN_MAX_ROW = 200000;
const VAL_MIN_ROW = 200001;
const VAL_MAX_ROW = 300000;
/**
* Calculate the commonsense baseline temperture-prediction accuracy.
*
* The latest value in the temperature feature column is used as the
* prediction.
*
* @param {boolean} normalize Whether to used normalized data for training.
* @param {boolean} includeDateTime Whether to include date and time features
* in training.
* @param {number} lookBack Number of look-back time steps.
* @param {number} step Step size used to generate the input features.
* @param {number} delay How many steps in the future to make the prediction
* for.
* @returns {number} The mean absolute error of the commonsense baseline
* prediction.
*/
export async function getBaselineMeanAbsoluteError(
jenaWeatherData, normalize, includeDateTime, lookBack, step, delay) {
const batchSize = 128;
const dataset = tf.data.generator(
() => jenaWeatherData.getNextBatchFunction(
false, lookBack, delay, batchSize, step, VAL_MIN_ROW, VAL_MAX_ROW,
normalize, includeDateTime));
const batchMeanAbsoluteErrors = [];
const batchSizes = [];
await dataset.forEachAsync(dataItem => {
const features = dataItem.xs;
const targets = dataItem.ys;
const timeSteps = features.shape[1];
batchSizes.push(features.shape[0]);
batchMeanAbsoluteErrors.push(tf.tidy(
() => tf.losses.absoluteDifference(
targets,
features.gather([timeSteps - 1], 1).gather([1], 2).squeeze([2]))));
});
const meanAbsoluteError = tf.tidy(() => {
const batchSizesTensor = tf.tensor1d(batchSizes);
const batchMeanAbsoluteErrorsTensor = tf.stack(batchMeanAbsoluteErrors);
return batchMeanAbsoluteErrorsTensor.mul(batchSizesTensor)
.sum()
.div(batchSizesTensor.sum());
});
tf.dispose(batchMeanAbsoluteErrors);
return meanAbsoluteError.dataSync()[0];
}
/**
* Build a linear-regression model for the temperature-prediction problem.
*
* @param {tf.Shape} inputShape Input shape (without the batch dimenson).
* @returns {tf.LayersModel} A TensorFlow.js tf.LayersModel instance.
*/
function buildLinearRegressionModel(inputShape) {
const model = tf.sequential();
model.add(tf.layers.flatten({inputShape}));
model.add(tf.layers.dense({units: 1}));
return model;
}
/**
* Build a GRU model for the temperature-prediction problem.
*
* @param {tf.Shape} inputShape Input shape (without the batch dimenson).
* @param {tf.regularizer.Regularizer} kernelRegularizer An optional
* regularizer for the kernel of the first (hdiden) dense layer of the MLP.
* If not specified, no weight regularization will be included in the MLP.
* @param {number} dropoutRate Dropout rate of an optional dropout layer
* inserted between the two dense layers of the MLP. Optional. If not
* specified, no dropout layers will be included in the MLP.
* @returns {tf.LayersModel} A TensorFlow.js tf.LayersModel instance.
*/
export function buildMLPModel(inputShape, kernelRegularizer, dropoutRate) {
const model = tf.sequential();
model.add(tf.layers.flatten({inputShape}));
model.add(
tf.layers.dense({units: 32, kernelRegularizer, activation: 'relu'}));
if (dropoutRate > 0) {
model.add(tf.layers.dropout({rate: dropoutRate}));
}
model.add(tf.layers.dense({units: 1}));
return model;
}
/**
* Build a simpleRNN-based model for the temperature-prediction problem.
*
* @param {tf.Shape} inputShape Input shape (without the batch dimenson).
* @returns {tf.LayersModel} A TensorFlow.js model consisting of a simpleRNN
* layer.
*/
export function buildSimpleRNNModel(inputShape) {
const model = tf.sequential();
const rnnUnits = 32;
model.add(tf.layers.simpleRNN({units: rnnUnits, inputShape}));
model.add(tf.layers.dense({units: 1}));
return model;
}
/**
* Build a GRU model for the temperature-prediction problem.
*
* @param {tf.Shape} inputShape Input shape (without the batch dimenson).
* @param {number} dropout Optional input dropout rate
* @param {number} recurrentDropout Optional recurrent dropout rate.
* @returns {tf.LayersModel} A TensorFlow.js GRU model.
*/
export function buildGRUModel(inputShape, dropout, recurrentDropout) {
// TODO(cais): Recurrent dropout is currently not fully working.
// Make it work and add a flag to train-rnn.js.
const model = tf.sequential();
const rnnUnits = 32;
model.add(tf.layers.gru({
units: rnnUnits,
inputShape,
dropout: dropout || 0,
recurrentDropout: recurrentDropout || 0
}));
model.add(tf.layers.dense({units: 1}));
return model;
}
/**
* Build a model for the temperature-prediction problem.
*
* @param {string} modelType Model type.
* @param {number} numTimeSteps Number of time steps in each input.
* exapmle
* @param {number} numFeatures Number of features (for each time step).
* @returns A compiled instance of `tf.LayersModel`.
*/
export function buildModel(modelType, numTimeSteps, numFeatures) {
const inputShape = [numTimeSteps, numFeatures];
console.log(`modelType = ${modelType}`);
let model;
if (modelType === 'mlp') {
model = buildMLPModel(inputShape);
} else if (modelType === 'mlp-l2') {
model = buildMLPModel(inputShape, tf.regularizers.l2());
} else if (modelType === 'linear-regression') {
model = buildLinearRegressionModel(inputShape);
} else if (modelType === 'mlp-dropout') {
const regularizer = null;
const dropoutRate = 0.25;
model = buildMLPModel(inputShape, regularizer, dropoutRate);
} else if (modelType === 'simpleRNN') {
model = buildSimpleRNNModel(inputShape);
} else if (modelType === 'gru') {
model = buildGRUModel(inputShape);
// TODO(cais): Add gru-dropout with recurrentDropout.
} else {
throw new Error(`Unsupported model type: ${modelType}`);
}
model.compile({loss: 'meanAbsoluteError', optimizer: 'rmsprop'});
model.summary();
return model;
}
/**
* Train a model on the Jena weather data.
*
* @param {tf.LayersModel} model A compiled tf.LayersModel object. It is
* expected to have a 3D input shape `[numExamples, timeSteps, numFeatures].`
* and an output shape `[numExamples, 1]` for predicting the temperature
* value.
* @param {JenaWeatherData} jenaWeatherData A JenaWeatherData object.
* @param {boolean} normalize Whether to used normalized data for training.
* @param {boolean} includeDateTime Whether to include date and time features
* in training.
* @param {number} lookBack Number of look-back time steps.
* @param {number} step Step size used to generate the input features.
* @param {number} delay How many steps in the future to make the prediction
* for.
* @param {number} batchSize batchSize for training.
* @param {number} epochs Number of training epochs.
* @param {tf.Callback | tf.CustomCallbackArgs} customCallback Optional callback
* to invoke at the end of every epoch. Can optionally have `onBatchEnd` and
* `onEpochEnd` fields.
*/
export async function trainModel(
model, jenaWeatherData, normalize, includeDateTime, lookBack, step, delay,
batchSize, epochs, customCallback) {
const trainShuffle = true;
const trainDataset =
tf.data
.generator(
() => jenaWeatherData.getNextBatchFunction(
trainShuffle, lookBack, delay, batchSize, step, TRAIN_MIN_ROW,
TRAIN_MAX_ROW, normalize, includeDateTime))
.prefetch(8);
const evalShuffle = false;
const valDataset = tf.data.generator(
() => jenaWeatherData.getNextBatchFunction(
evalShuffle, lookBack, delay, batchSize, step, VAL_MIN_ROW,
VAL_MAX_ROW, normalize, includeDateTime));
await model.fitDataset(trainDataset, {
batchesPerEpoch: 500,
epochs,
callbacks: customCallback,
validationData: valDataset
});
}