-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathworkflow.py
130 lines (101 loc) · 3.71 KB
/
workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import urllib.request
from tensorlake import RemoteGraph, Graph, Image
from tensorlake.functions_sdk.data_objects import File
from tensorlake.functions_sdk.functions import (
TensorlakeCompute,
tensorlake_function,
)
from pydantic import BaseModel
from typing import List
import io
image = (
Image()
.name("tensorlake/blueprints-ultralytics")
.base_image("pytorch/pytorch:2.4.1-cuda12.1-cudnn9-runtime")
.run("apt update")
.run("apt install -y libgl1-mesa-glx libglib2.0-0 libsm6 libxrender1 libxext6")
.run("pip install ultralytics")
.run("pip install transformers")
.run("pip install einops")
)
class Detection(BaseModel):
bbox: List[float]
label: str
confidence: float
class ObjectDetectionResult(BaseModel):
detections: List[Detection]
image: File
class ObjectDetector(TensorlakeCompute):
name = "object_detector"
image = image
def __init__(self):
super().__init__()
from ultralytics import YOLO
self.model = YOLO("yolov8n.pt")
def run(self, img: File) -> ObjectDetectionResult:
import cv2
import numpy as np
nparr = np.frombuffer(img.data, np.uint8)
image_arr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# Run inference
results = self.model(image_arr, conf=0.25, iou=0.7)
detections = []
for result in results:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].tolist()
class_id = int(box.cls)
class_name = result.names[class_id]
confidence = float(box.conf)
detections.append(
Detection(
bbox=[x1, y1, x2, y2], label=class_name, confidence=confidence
)
)
return ObjectDetectionResult(detections=detections, image=img)
class ImageDescription(BaseModel):
description: str
detections: List[Detection]
class FilteredImage(BaseModel):
is_filtered: bool
class ImageDescriber(TensorlakeCompute):
name = "image_describer"
image = image
def __init__(self):
super().__init__()
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "vikhyatk/moondream2"
revision = "2024-08-26"
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
revision=revision,
)
self.tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
def run(self, detection_result: ObjectDetectionResult) -> ImageDescription:
from PIL import Image
image = Image.open(io.BytesIO(detection_result.image.data))
enc_image = self.model.encode_image(image)
result = self.model.answer_question(
enc_image, "Describe this image.", self.tokenizer
)
return ImageDescription(
description=result, detections=detection_result.detections
)
if __name__ == "__main__":
from pathlib import Path
import urllib.request
with urllib.request.urlopen(
"https://www.frommers.com/system/media_items/attachments/000/868/461/s980/Frommers-New-York-City-Getting-Around-1190x768.webp?1647177178"
) as response:
data = response.read()
img = File(data=data)
img = File(data=data)
g = Graph(name="object_detection_workflow", start_node=ObjectDetector)
g.add_edge(ObjectDetector, ImageDescriber)
# Pass server_url="http://..." to point to indexify server. default is
# http://localhost:8900
g = RemoteGraph.deploy(g)
invocation_id = g.run(block_until_done=True, img=img)
output = g.output(invocation_id, "image_describer")
print(output)