-
Notifications
You must be signed in to change notification settings - Fork 10
/
site.cfg.example
135 lines (127 loc) · 4.89 KB
/
site.cfg.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# This file provides configuration information about non-Python dependencies for
# numpy.distutils-using packages. Create a file like this called "site.cfg" next
# to your package's setup.py file and fill in the appropriate sections. Not all
# packages will use all sections so you should leave out sections that your
# package does not use.
# To assist automatic installation like easy_install, the user's home directory
# will also be checked for the file ~/.numpy-site.cfg .
# The format of the file is that of the standard library's ConfigParser module.
#
# http://www.python.org/doc/current/lib/module-ConfigParser.html
#
# Each section defines settings that apply to one particular dependency. Some of
# the settings are general and apply to nearly any section and are defined here.
# Settings specific to a particular section will be defined near their section.
#
# libraries
# Comma-separated list of library names to add to compile the extension
# with. Note that these should be just the names, not the filenames. For
# example, the file "libfoo.so" would become simply "foo".
# libraries = lapack,f77blas,cblas,atlas
#
# library_dirs
# List of directories to add to the library search path when compiling
# extensions with this dependency. Use the character given by os.pathsep
# to separate the items in the list. On UN*X-type systems (Linux, FreeBSD,
# OS X):
# library_dirs = /usr/lib:/usr/local/lib
# On Windows:
# library_dirs = c:\mingw\lib,c:\atlas\lib
#
# include_dirs
# List of directories to add to the header file earch path.
# include_dirs = /usr/include:/usr/local/include
#
# src_dirs
# List of directories that contain extracted source code for the
# dependency. For some dependencies, numpy.distutils will be able to build
# them from source if binaries cannot be found. The FORTRAN BLAS and
# LAPACK libraries are one example. However, most dependencies are more
# complicated and require actual installation that you need to do
# yourself.
# src_dirs = /home/rkern/src/BLAS_SRC:/home/rkern/src/LAPACK_SRC
#
# search_static_first
# Boolean (one of (0, false, no, off) for False or (1, true, yes, on) for
# True) to tell numpy.distutils to prefer static libraries (.a) over
# shared libraries (.so). It is turned off by default.
# search_static_first = false
# Defaults
# ========
# The settings given here will apply to all other sections if not overridden.
# This is a good place to add general library and include directories like
# /usr/local/{lib,include}
#
#[DEFAULT]
#library_dirs = /usr/local/lib
#include_dirs = /usr/local/include
# Optimized BLAS and LAPACK
# -------------------------
# Use the blas_opt and lapack_opt sections to give any settings that are
# required to link against your chosen BLAS and LAPACK, including the regular
# FORTRAN reference BLAS and also ATLAS. Some other sections still exist for
# linking against certain optimized libraries (e.g. [atlas], [lapack_atlas]),
# however, they are now deprecated and should not be used.
#
# These are typical configurations for ATLAS (assuming that the library and
# include directories have already been set in [DEFAULT]; the include directory
# is important for the BLAS C interface):
#
#[blas_opt]
#libraries = f77blas, cblas, atlas
#
#[lapack_opt]
#libraries = lapack, f77blas, cblas, atlas
#
# If your ATLAS was compiled with pthreads, the names of the libraries might be
# different:
#
#[blas_opt]
#libraries = ptf77blas, ptcblas, atlas
#
#[lapack_opt]
#libraries = lapack, ptf77blas, ptcblas, atlas
# UMFPACK
# -------
# The UMFPACK library is used to factor large sparse matrices. It, in turn,
# depends on the AMD library for reordering the matrices for better performance.
# Note that the AMD library has nothing to do with AMD (Advanced Micro Devices),
# the CPU company.
#
# http://www.cise.ufl.edu/research/sparse/umfpack/
# http://www.cise.ufl.edu/research/sparse/amd/
#
#[amd]
#amd_libs = amd
#
#[umfpack]
#umfpack_libs = umfpack
# FFT libraries
# -------------
# There are two FFT libraries that we can configure here: FFTW (2 and 3) and djbfft.
#
# http://fftw.org/
# http://cr.yp.to/djbfft.html
#
# Given only this section, numpy.distutils will try to figure out which version
# of FFTW you are using.
#[fftw]
#libraries = fftw3
#
# For djbfft, numpy.distutils will look for either djbfft.a or libdjbfft.a .
#[djbfft]
#include_dirs = /usr/local/djbfft/include
#library_dirs = /usr/local/djbfft/lib
# MKL
#----
# For recent (9.0.21, for example) mkl, you need to change the names of the
# lapack library. Assuming you installed the mkl in /opt, for a 32 bits cpu:
# [mkl]
# library_dirs = /opt/intel/mkl/9.1.023/lib/32/
# lapack_libs = mkl_lapack
#
# For 10.*, on 32 bits machines:
# [mkl]
# library_dirs = /opt/intel/mkl/10.0.1.014/lib/32/
# lapack_libs = mkl_lapack
# mkl_libs = mkl, guide