-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain1d_bool.cpp
257 lines (221 loc) · 7.58 KB
/
main1d_bool.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "buffers.h"
#include "common.h"
#include "logger.h"
#include "NvInfer.h"
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
const std::string gSampleName = "Type1a";
/**
* This example is derived from the TensorRT samples published at
* https://github.com/NVIDIA/TensorRT. The aim of this example is to test
* TensorRT networks that have tensors with multiple types.
*/
class TrtExample {
template <typename T>
using SampleUniquePtr = std::unique_ptr<T, samplesCommon::InferDeleter>;
public:
TrtExample() : mEngine(nullptr) {}
//!
//! \brief Function builds the network engine
//!
bool build();
//!
//! \brief Runs the TensorRT inference engine for this sample
//!
bool infer();
private:
std::shared_ptr<nvinfer1::ICudaEngine>
mEngine; //!< The TensorRT engine used to run the network
//!
//! \brief Uses the TensorRT API to create the Network
//!
bool constructNetwork(SampleUniquePtr<nvinfer1::IBuilder> &builder,
SampleUniquePtr<nvinfer1::INetworkDefinition> &network,
SampleUniquePtr<nvinfer1::IBuilderConfig> &config);
//!
//! \brief Reads the input and stores the result in a managed buffer
//!
bool processInput(const samplesCommon::BufferManager &buffers);
//!
//! \brief Classifies digits and verify result
//!
bool verifyOutput(const samplesCommon::BufferManager &buffers);
};
//!
//! \brief Creates the network, configures the builder and creates the engine
//!
//! \details This function creates the network by using the API to create a
//! model and builds the engine that will be used to run the network
//!
//! \return Returns true if the engine was created successfully and false
//! otherwise
//!
bool TrtExample::build() {
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(
nvinfer1::createInferBuilder(gLogger.getTRTLogger()));
if (!builder) {
return false;
}
uint32_t flags =
1U << static_cast<int>(
nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(
builder->createNetworkV2(flags));
if (!network) {
return false;
}
auto config =
SampleUniquePtr<nvinfer1::IBuilderConfig>(builder->createBuilderConfig());
if (!config) {
return false;
}
// config->setFlag(nvinfer1::BuilderFlag::kFP16);
// config->setFlag(nvinfer1::BuilderFlag::kINT8);
// config->setFlag(BuilderFlag::kSTRICT_TYPES);
auto constructed = constructNetwork(builder, network, config);
if (!constructed) {
return false;
}
return true;
}
//!
//! \brief Uses the API to create the Network
//!
bool TrtExample::constructNetwork(
SampleUniquePtr<nvinfer1::IBuilder> &builder,
SampleUniquePtr<nvinfer1::INetworkDefinition> &network,
SampleUniquePtr<nvinfer1::IBuilderConfig> &config) {
nvinfer1::Dims dims{4, {1, 1, 1, 4}};
// Add the input.
auto input1 = network->addInput("Input1", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
auto input2 = network->addInput("Input2", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
// Add the hidden layer.
auto layer =
network->addElementWise(*input1, *input2, ElementWiseOperation::kGREATER);
layer->setOutputType(
0, nvinfer1::DataType::kBOOL); // This line doesn't seem to be useful
// Mark the output.
auto output = layer->getOutput(0);
output->setName("Output");
output->setType(nvinfer1::DataType::kBOOL);
network->markOutput(*output);
switch (output->getType()) {
case nvinfer1::DataType::kINT8:
gLogInfo << "Output type is INT8" << std::endl;
break;
case nvinfer1::DataType::kINT32:
gLogInfo << "Output type is INT32" << std::endl;
break;
case nvinfer1::DataType::kFLOAT:
gLogInfo << "Output type is FP32" << std::endl;
break;
case nvinfer1::DataType::kHALF:
gLogInfo << "Output type is FP16" << std::endl;
break;
case nvinfer1::DataType::kBOOL:
gLogInfo << "Output type is BOOL" << std::endl;
break;
default:
gLogInfo << "Output type is unknown" << std::endl;
}
// Set allowed formats for this tensor. By default all formats are allowed.
// Shape tensors may only have row major linear format.
// Note that formats here define layout
// network->getInput(0)->setAllowedFormats(formats);
// network->getOutput(0)->setAllowedFormats(formats);
config->setMaxWorkspaceSize(16_MiB);
mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(
builder->buildEngineWithConfig(*network, *config),
samplesCommon::InferDeleter());
if (!mEngine) {
return false;
}
gLogInfo << "Engine constructed successfully" << std::endl;
return true;
}
//!
//! \brief Runs the TensorRT inference engine for this sample
//!
//! \details This function is the main execution function of the sample. It
//! allocates the buffer,
//! sets inputs and executes the engine.
//!
bool TrtExample::infer() {
auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(
mEngine->createExecutionContext());
if (!context) {
return false;
}
// Create RAII buffer manager object
samplesCommon::BufferManager buffers(mEngine, 0, context.get());
int n_inputs = 0;
for (int i = 0; i < mEngine->getNbBindings(); i++) {
if (mEngine->bindingIsInput(i))
n_inputs++;
}
if (n_inputs > 0) {
auto input_dims = context->getBindingDimensions(0);
std::vector<int> values{-1, 0, 1, 2};
// Read the input data into the managed buffers
uint8_t *hostShapeBuffer =
static_cast<uint8_t *>(buffers.getHostBuffer("input"));
for (int i = 0; i < values.size(); i++) {
std::cout << "Setting input value " << i << ": " << values[i] << "\n";
hostShapeBuffer[i] = values[i];
}
// Memcpy from host input buffers to device input buffers
buffers.copyInputToDevice();
}
bool status = context->executeV2(buffers.getDeviceBindings().data());
if (!status) {
return false;
}
// Memcpy from device output buffers to host output buffers
buffers.copyOutputToHost();
// Verify results
std::vector<int> expected_output{0, 0, 1, 2};
uint8_t *res = static_cast<uint8_t *>(buffers.getHostBuffer("output"));
std::cout << "\nOutput:\n" << std::endl;
bool correct = true;
for (int i = 0; i < expected_output.size(); i++) {
if (std::abs(res[i] - expected_output[i]) > 0.025) {
std::cout << i << ": error incorrect value " << res[i] << " vs "
<< expected_output[i] << "\n";
correct = false;
}
}
return correct;
}
int main(int argc, char **argv) {
auto sampleTest = gLogger.defineTest(gSampleName, argc, argv);
gLogger.reportTestStart(sampleTest);
TrtExample sample;
gLogInfo << "Building and running inference engine for shape example"
<< std::endl;
if (!sample.build()) {
return gLogger.reportFail(sampleTest);
}
// if (!sample.infer()) {
// return gLogger.reportFail(sampleTest);
// }
return gLogger.reportPass(sampleTest);
}