-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
65 lines (59 loc) · 2.16 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from fastai.text.all import (
load_learner, Learner,
)
from utils.change_query import DEFAULT_QUERY_MAPPING
import numpy as np
from datasets.mrc_ner_dataset_vlsp_fastai import SentenceTransform
path = ''
learner: Learner = load_learner(path, cpu=False)
sent_tfms = SentenceTransform(
tokenizer=None,
possible_only=False,
)
def predict(learner, s, tokenizer):
labels = list(DEFAULT_QUERY_MAPPING.keys())
data = [{
'context': s,
'entity_label': entity_label,
'query': DEFAULT_QUERY_MAPPING[entity_label],
} for entity_label in labels]
data = [sent_tfms(sent) for sent in data]
dl = learner.dls.test_dl(data)
preds = learner.get_preds(dl=dl)
start_logits, end_logits, span_logits = preds[0]
start_preds, end_preds, match_preds = start_logits > 0, end_logits > 0, span_logits > 0
bsz, seq_len = start_preds.size()
match_preds = (match_preds
& start_preds.unsqueeze(-1).expand(-1, -1, seq_len)
& end_preds.unsqueeze(1).expand(-1, seq_len, -1)).numpy()
spans = []
for i, label in enumerate(labels):
start_indices, end_indices = np.where(match_preds[i])
context_si = data[i]['token_ids'].index(2) + 1
start_indices = start_indices - context_si
end_indices = end_indices - context_si
span_indices = [(s_i, e_i) for s_i, e_i in zip(start_indices, end_indices) if s_i <= e_i]
token_ids = data[i]['token_ids'][context_si:-1]
spans.extend([
(s_i, e_i + 1, label) for s_i, e_i in span_indices
])
indxs = set()
for s_i, e_i, _ in spans:
indxs.add(s_i)
indxs.add(e_i)
indxs.add(0)
indxs.add(len(token_ids))
indxs = list(indxs)
idx_map = {}
curr_len = 0
tokens = []
for s_i, e_i in zip(indxs[:-1], indxs[1:]):
text = tokenizer.decode(token_ids[s_i:e_i])
new_tokens = text.split()
text_len = len(new_tokens)
tokens.extend(new_tokens)
idx_map[s_i] = curr_len
curr_len += text_len
idx_map[indxs[-1]] = len(tokens)
new_spans = [(idx_map[span[0]], idx_map[span[1]], span[2]) for span in spans]
return new_spans, tokens