-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinData.m
143 lines (137 loc) · 4.08 KB
/
binData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function [binnedX, binnedY]=binData(xData,yData,varargin)
%% Syntax
% [binnedX, binnedY]=binData(xData,yData,'binNumber',number)
% [binnedX, binnedY]=binData(xData,yData,'binInterval',interval)
%
% Description
% bins x and y data
%
% Parameters
% xData: the data along the x-axis. Either a numerical array or a datetime
% array. xData is sorted before binning and yData is rearranged accordingly
% before binning.
% yData: the data along the y-axis. A Cell array of numbers.
%
% optional Key-value pairs:
% 'binNumber': numeric, number of columns from xData and yData that should
% be combined. The length of xData and yData must be an integer multiple of
% binNumber
% 'binInterval': numeric, interval along xData that should be combined.
% Starting from the first value in xData, the function checks how many
% values of xData fall within the interval and calculates the mean of those
% xData and puts it into binnedX. The corresponding columns of yData are
% combined into the corresponding column of binnedY
% 'scatter': the data is prepared for a scatter plot. I.e. it is not
% binned, but for each y value a corresponding x value is generated and
% binnedX and binnedY are made to contain an equal number of elements.
%
% Output
% binnedX: vector of mean of binned x values (datetime is converted to datenum)
% binnedY: matrix of binned y values the number of columns corresponds to
% the length of binnedX, the number of rows corresponds to the maximum
% number of values in each binned Y dataset. The rest of the values are
% filled with NaN.
%
% Examples
% xData=[1; 2; 3; 4; 5; 6]
% yData={[1 2];[3 4 5]; [5 6]; [7 8]; [9 10]; [11 12]}
%
% [binnedX, binnedY]=binData(xData,yData,'binNumber',2)
% binnedX =
% 1.5000 3.5000 5.5000
% binnedY =
% 1 5 9
% 2 6 10
% 3 7 11
% 4 8 12
% 5 NaN NaN
%
% [binnedX, binnedY]=binData(xData,yData,'binInterval',3)
% binnedX =
% 2
% 5
% binnedY =
% 1 7
% 2 8
% 3 9
% 4 10
% 5 11
% 5 12
% 6 NaN
% See also MAKEPLOT,MAKEMANYPLOTS.
p=inputParser;
p.addRequired('xData',@(x) isdatetime(x) || isnumeric(x));
p.addRequired('yData',@iscell);
p.addParameter('binNumber',[],@isnumeric);
p.addParameter('binInterval',[],@isnumeric);
p.addParameter('scatter',false,@islogical);
p.parse(xData,yData,varargin{:});
allY=cellfun(@reduce,yData,'UniformOutput',false);
if isdatetime(xData)
binnedX=datenum(xData);
binnedX=(binnedX-min(binnedX))*24; %convert datenum to hours
else
binnedX=xData;
end
[binnedX,I]=sort(binnedX);
allY=allY(I);
l=length(allY);
if p.Results.scatter
AllLengths=cellfun('length',allY);
TotLen=sum(AllLengths);
NewY=NaN(1,TotLen);
NewX=NaN(1,TotLen);
C=1;
for n=1:l
NewY(C:C-1+AllLengths(n))=allY{n};
NewX(C:C-1+AllLengths(n))=binnedX(n);
C=C+AllLengths(n);
end
binnedX=NewX;
binnedY=NewY;
elseif ~isempty(p.Results.binNumber)
if mod(l,p.Results.binNumber)>0
warning('MATLAB:AutoTipTrack:MakeBoxPlot:wrongBinsize','The length:, %d has to be a multiple of the binning size: %d. Continuing without binning.',l,p.Results.binning);
else
bin=p.Results.binNumber;
newL=l/bin;
tmpS=cell(1,newL);
tmpT=NaN(1,newL);
for n=1:newL
tmpS{n}=cell2mat(allY(n*bin-bin+1:n*bin));
tmpT(n)=mean(binnedX(n*bin-bin+1:n*bin));
end
allY=tmpS;
binnedX=tmpT;
end
elseif ~isempty(p.Results.binInterval)
interval=p.Results.binInterval;
current=1;
offset=0;
while current<l
while current+offset+1<=l && binnedX(current+offset+1)-binnedX(current)<interval
offset=offset+1;
end
if offset>0
binnedX(current)=mean(binnedX(current:current+offset));
binnedX(current+1:current+offset)=[];
allY{current}=vertcat(allY{current:current+offset});
allY(current+1:current+offset)=[];
offset=0;
end
current=current+1;
l=length(allY);
end
end
if ~p.Results.scatter
maxLen=max(cellfun('length',allY));
binnedY=NaN(maxLen,length(allY));
for n=1:length(allY)
binnedY(1:length(allY{n}),n)=allY{n};
end
end
end
function x=reduce(x)
x=x(:);
x(isnan(x))=[];
end