-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathroller-vllm.py
145 lines (119 loc) · 5.23 KB
/
roller-vllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
from jinja2 import Template
import json
prompt_template = """A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: BEGININPUT
BEGINCONTEXT
Transcription part {{ idx+1 }} of {{ len }}, start time {{ start|round|int }}s
{{ context }}
{{ speakermap }}
ENDCONTEXT
{{ chunk }}
ENDINPUT
BEGININSTRUCTION
{{ instruction }}
ENDINSTRUCTION ASSISTANT:"""
instruction_v1 = """Continue the rolling transcription summary of "{{title}}".
Consider the current context when summarizing the given transcription part.
Respond ONLY with a JSON object with 3 keys in the following format:
{
Speaker-Map: A map of speakers to their names, for example { "SPEAKER 1": "Bob Dole", "SPEAKER 2": "Jane Doe" }. Once a speaker is identified, it must not change.
Next-Context: "An updated context for the next part of the transcription. Always include the speakers and the current topics of discussion.",
Summary: "A detailed, point-by-point summary of the current transcription."
}
"""
# this gives longer replies but has a much higher chance of stopping in the middle
# re-investigate when splitting the prompts
# Summary: "A detailed, point-by-point summary of the current transcription. Include details of major points. Write at least 3 sentences but no more then 6 sentences.",
instruction = """Continue the rolling transcription summary of "{{title}}".
Consider the current context when summarizing the given transcription part.
Respond ONLY with a JSON object with 3 keys in the following format:
{
Speaker-Map: A map of speakers to their names, for example { "SPEAKER 1": "Bob Dole", "SPEAKER 2": "Jane Doe" }. Once a speaker is identified, it must not change.
Summary: "A detailed, point-by-point summary of the current transcription. Include details of major points. Write at least three sentences and no more then six sentences. ALWAYS maintain third person.",
Next-Context: "List of topics from the transcription Summary above."
}
"""
answer_prefixes = [
"In this part of the transcription, ",
"In this transcription part, ",
"In this part of the conversation, ",
"In the current transcription part, "
]
import sys
sys.path.append('../can-ai-code/')
from interview_cuda import InterviewVLLM
params = {
"temperature": 0.7,
"presence_penalty": 1.176,
"top_p": 0.1,
"max_tokens": 2048
}
def main(prefix: str, model_name: str, gpu_split: str = "", init_speakers: str = "", max_seq_len: int = 2048, ):
model = InterviewVLLM(model_name, json.loads(info), gpu_split=gpu_split if gpu_split else None)
model.load()
the_template = Template(prompt_template)
split_segments = json.load(open(prefix+'.chunk.json'))
info = json.load(open(prefix+'.info.json'))
context = f"""
Speakers: [ "UNKNOWN" ]
Topics: [ "UNKNOWN" ]
Title: "{info['title']}"
Description: "{info['description'][:512]}"
"""
speakers = "{ UNKNOWN }"
f = open(prefix+'.summary.json', 'w')
p = open(prefix+'.prompts.json', 'w')
idx = 0
for chunk in split_segments:
dur = chunk['end'] - chunk['start']
print(f"{idx}: {dur}s {len(chunk['text'])}")
prompt = the_template.render(chunk=chunk['text'], start=chunk['start'], end=chunk['end'],
instruction=instruction,
idx=idx, len=len(split_segments), context=context, speakermap=speakers, title=info['title'])
if model.batch:
answers, model_info = model.generate([prompt], params)
answer = answers[0]
else:
answer, model_info = model.generate(prompt, params)
# the trailing } is sometimes lost
if not answer.endswith('}'): answer += '}'
for prefix in answer_prefixes:
answer = answer.replace(prefix, '')
#print(answer)
answer_json = {}
new_context = ''
new_speakers = ''
summary = ''
try:
answer_json = json.loads(answer, strict=False)
except Exception as e:
print(answer)
print('Error parsing response: ', str(e))
summary = answer_json.get('Summary','')
new_context = str(answer_json.get('Next-Context',''))
new_speakers = str(answer_json.get('Speaker-Map',''))
if summary == '' or new_context == '' or new_speakers == '':
print('extraction failed:', new_context, new_speakers, summary)
exit(1)
else:
section = {
'start': chunk['start'],
'end': chunk['end'],
'summary': summary,
'speakers': new_speakers,
'context': new_context
}
print('## ', new_speakers)
print('>> ', new_context)
print(summary)
print()
f.write(json.dumps(section)+'\n')
f.flush()
p.write(json.dumps({'prompt': prompt, 'answer': answer})+'\n')
p.flush()
context = new_context
speakers = new_speakers
idx = idx + 1
if __name__ == "__main__":
import fire
fire.Fire(main)