-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathmodel.py
75 lines (58 loc) · 2.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
import numpy as np
import torch as t
import torch.nn as nn
from torch import LongTensor as LT
from torch import FloatTensor as FT
class Bundler(nn.Module):
def forward(self, data):
raise NotImplementedError
def forward_i(self, data):
raise NotImplementedError
def forward_o(self, data):
raise NotImplementedError
class Word2Vec(Bundler):
def __init__(self, vocab_size=20000, embedding_size=300, padding_idx=0):
super(Word2Vec, self).__init__()
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.ivectors = nn.Embedding(self.vocab_size, self.embedding_size, padding_idx=padding_idx)
self.ovectors = nn.Embedding(self.vocab_size, self.embedding_size, padding_idx=padding_idx)
self.ivectors.weight = nn.Parameter(t.cat([t.zeros(1, self.embedding_size), FT(self.vocab_size - 1, self.embedding_size).uniform_(-0.5 / self.embedding_size, 0.5 / self.embedding_size)]))
self.ovectors.weight = nn.Parameter(t.cat([t.zeros(1, self.embedding_size), FT(self.vocab_size - 1, self.embedding_size).uniform_(-0.5 / self.embedding_size, 0.5 / self.embedding_size)]))
self.ivectors.weight.requires_grad = True
self.ovectors.weight.requires_grad = True
def forward(self, data):
return self.forward_i(data)
def forward_i(self, data):
v = LT(data)
v = v.cuda() if self.ivectors.weight.is_cuda else v
return self.ivectors(v)
def forward_o(self, data):
v = LT(data)
v = v.cuda() if self.ovectors.weight.is_cuda else v
return self.ovectors(v)
class SGNS(nn.Module):
def __init__(self, embedding, vocab_size=20000, n_negs=20, weights=None):
super(SGNS, self).__init__()
self.embedding = embedding
self.vocab_size = vocab_size
self.n_negs = n_negs
self.weights = None
if weights is not None:
wf = np.power(weights, 0.75)
wf = wf / wf.sum()
self.weights = FT(wf)
def forward(self, iword, owords):
batch_size = iword.size()[0]
context_size = owords.size()[1]
if self.weights is not None:
nwords = t.multinomial(self.weights, batch_size * context_size * self.n_negs, replacement=True).view(batch_size, -1)
else:
nwords = FT(batch_size, context_size * self.n_negs).uniform_(0, self.vocab_size - 1).long()
ivectors = self.embedding.forward_i(iword).unsqueeze(2)
ovectors = self.embedding.forward_o(owords)
nvectors = self.embedding.forward_o(nwords).neg()
oloss = t.bmm(ovectors, ivectors).squeeze().sigmoid().log().mean(1)
nloss = t.bmm(nvectors, ivectors).squeeze().sigmoid().log().view(-1, context_size, self.n_negs).sum(2).mean(1)
return -(oloss + nloss).mean()