-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBL.hs
93 lines (79 loc) · 3.58 KB
/
RBL.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
{-|
Module : RBL
Description : The definition of the RBL-Calculus in Haskell
Copyright : (c) Rodrigo Bonifacio, 2017
License : MIT
Maintainer : [email protected]
Stability : experimental
The RBL-Calculus is an extension of the Abs Calculus
discussed in the Declarative Languages graduate course
at University of Brasilia.
-}
module RBL (Expression(..), eval) where
import Data.Bool
type Id = String
data Expression = B Bool
| N Integer
| Add Expression Expression
| Sub Expression Expression
| And Expression Expression
| Or Expression Expression
| Not Expression
| IfThenElse Expression Expression Expression
| Let Id Expression Expression
| Ref Id -- symbol (or variable)
| Abs Id Expression -- abstraction
| Appl Expression Expression -- Appllication
deriving(Show, Eq)
-- | The 'eval' function defines the operational semantics of our language.
-- It reduces an expression either to a number, a bool or a Abs expression.
-- There is an statement to each type of expression of our language.
eval :: Expression -> Expression
eval (B b) = B b
eval (N n) = N n
eval (Add e1 e2) = numBinExpression (+) e1 e2
eval (Sub e1 e2) = numBinExpression (-) e1 e2
eval (And e1 e2) = boolBinExpression (&&) e1 e2
eval (Or e1 e2) = boolBinExpression (||) e1 e2
eval (Not e) = let (B b) = eval e in B (not b)
eval (IfThenElse c e1 e2) = if (eval c == (B True)) then eval e1 else eval e2
eval (Let v e1 e2) = eval (subst v e1 e2)
eval (Ref v) = error "we should not evaluate a free variable"
eval (Abs v e) = (Abs v e)
eval (Appl e1 e2) = eval (subst x e2 e)
where (Abs x e) = eval e1
-- | The 'subst' function substitues an id by an expression within an expression body.
-- Consider as example an expression like let x = e1 in e2. We use this function
-- to replace x by e1 within e2. Therefore, this function takes an id and two
-- expressions, and returns another expression.
subst :: Id -> Expression -> Expression -> Expression
subst _ _ (B v) = B v
subst _ _ (N v) = N v
subst v e (Add e1 e2) = Add (subst v e e1) (subst v e e2)
subst v e (Sub e1 e2) = Sub (subst v e e1) (subst v e e2)
subst v e (And e1 e2) = And (subst v e e1) (subst v e e2)
subst v e (Or e1 e2) = Or (subst v e e1) (subst v e e2)
subst v e (Not e1) = Not (subst v e e1)
subst v e (IfThenElse e1 e2 e3) = IfThenElse (subst v e e1) (subst v e e2) (subst v e e3)
subst v e (Let x e1 e2)
| v == x = Let x (subst v e e1) e2
| otherwise = Let x (subst v (eval e) e1) (subst v e e2)
subst v e (Ref x)
| v == x = e
| otherwise = (Ref x)
subst v e (Abs x exp)
| v == x = Abs v exp
| otherwise = Abs x (subst v e exp)
-- |* auxiliary functions
numBinExpression :: (Integer -> Integer -> Integer) -> Expression -> Expression -> Expression
numBinExpression op e1 e2 =
let
(N v1) = eval e1
(N v2) = eval e2
in N (v1 `op` v2)
boolBinExpression :: (Bool -> Bool -> Bool) -> Expression -> Expression -> Expression
boolBinExpression op e1 e2 =
let
(B v1) = eval e1
(B v2) = eval e2
in B (v1 `op` v2)