-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
executable file
·119 lines (97 loc) · 3.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.backends import cudnn
import torchvision
from torchvision import transforms
from dataset import NIT_EC
from tqdm import tqdm
from torchmetrics.classification import BinaryAveragePrecision
from nitec.model import ResNet
import torchvision.models as models
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--gpu', dest='gpu_id', help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument(
'--snapshot', dest='snapshot', help='Path of model snapshot.',
default='', type=str)
args = parser.parse_args()
return args
def load_filtered_state_dict(model, snapshot):
# By user apaszke from discuss.pytorch.org
model_dict = model.state_dict()
snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
model_dict.update(snapshot)
model.load_state_dict(model_dict)
if __name__ == '__main__':
args = parse_args()
cudnn.enabled = True
gpu = args.gpu_id
# Set device for training
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define ResNet18 model; change model here if desired
model = ResNet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 2)
# For ResNet50:
#model = ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3],2)
if not args.snapshot == '':
# print("load snapshot...")
saved_state_dict = torch.load(args.snapshot, map_location='cpu')
if 'model_state_dict' in saved_state_dict:
model.load_state_dict(saved_state_dict['model_state_dict'])
else:
model.load_state_dict(saved_state_dict)
saved_state_dict = torch.load(args.snapshot)
torch.save(model.state_dict(), "rs18_nitec.pth")
model.to(device)
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transformations = transforms.Compose([#transforms.Resize(224),
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
test_data = NIT_EC(transform=transformations, data_split='test')
test_loader = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)
tp = 0
fp = 0
tn = 0
fn = 0
tp0 = 0
fp0 = 0
tn0 = 0
fn0 = 0
fpr = []
tpr = []
prediction_list = []
y_list = []
model.eval()
metric = BinaryAveragePrecision(thresholds=None)
with torch.no_grad():
for i, (inputs, labels) in enumerate(tqdm(test_loader)):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
_, lbs = torch.max(labels, 1)
prediction_list.append(outputs[0][1].item())
y_list.append(int(lbs.item()))
tp += torch.sum(preds == 1 and preds == lbs)
fp += torch.sum(preds == 1 and preds != lbs )
tn += torch.sum(preds == 0 and preds == lbs)
fn += torch.sum(preds == 0 and preds != lbs)
tp0 += torch.sum(preds == 0 and preds == lbs)
fp0 += torch.sum(preds == 0 and preds != lbs )
tn0 += torch.sum(preds == 1 and preds == lbs)
fn0 += torch.sum(preds == 1 and preds != lbs)
accuracy = (tp + tn) / (len(test_data)* 1.0)
precision = (1.0 * tp) / (tp + fp)
recall = (1.0 * tp) / (tp + fn)
f1 = 2.0 / ((1.0 / precision) + (1.0 / recall))
precision0 = (1.0 * tp0) / (tp0 + fp0)
print(f"AP: { metric(torch.Tensor(prediction_list), torch.IntTensor(y_list))}")
print(f"F1: { 2.0 / ((1.0 / precision) + (1.0 / recall))}")