Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce computational cost of IPA #242

Open
tky823 opened this issue Jul 23, 2023 · 1 comment
Open

Reduce computational cost of IPA #242

tky823 opened this issue Jul 23, 2023 · 1 comment
Labels
bss Blind source separation method math Math related issue
Milestone

Comments

@tky823
Copy link
Owner

tky823 commented Jul 23, 2023

Summary

We might reduce the computational cost of IPA using the representation of block matrix.

@tky823 tky823 added bss Blind source separation method math Math related issue labels Jul 23, 2023
@tky823 tky823 added this to the v0.2.0 milestone Jul 23, 2023
@tky823
Copy link
Owner Author

tky823 commented Jul 23, 2023

$$\begin{align} \boldsymbol{\Pi}_{n} &= (\bar{\boldsymbol{E}}_{n}; \boldsymbol{e}_{n}) \\\ \boldsymbol{\Pi}_{n}\tilde{\boldsymbol{U}}_{in}\boldsymbol{\Pi}_{n}^{\mathsf{T}} &= \left( \begin{array}{cc} \boldsymbol{\Phi}_{in} & \boldsymbol{\mu}_{in} \\\ \boldsymbol{\mu}_{in}^{\mathsf{H}} & \eta_{in} \end{array} \right) \end{align}$$ $$\left\{(\boldsymbol{\Pi}_{n}\tilde{\boldsymbol{U}}_{in}\boldsymbol{\Pi}_{n}^{\mathsf{T}})^{*}\right\}^{-1} ={\displaystyle \left( \begin{array}{cc} \left(\boldsymbol{\Phi}_{in}^{*} - \dfrac{\boldsymbol{\mu}_{in}^{*}\boldsymbol{\mu}_{in}^{\mathsf{T}}}{s_{in}}\right)^{-1} & -\dfrac{(\boldsymbol{\Phi}_{in}^{*})^{-1}\boldsymbol{\mu}_{in}^{*}}{s_{in}} \\\ -\dfrac{\boldsymbol{\mu}_{in}^{\mathsf{T}}(\boldsymbol{\Phi}_{in}^{*})^{-1}}{s_{in}} & \dfrac{1}{s_{in}} \end{array} \right) },$$

where $s_{in}$ is a scalar value:

$$s_{in} := \eta_{in} - \boldsymbol{\mu}_{in}^{\mathsf{T}}(\boldsymbol{\Phi}_{in}^{*})^{-1}\boldsymbol{\mu}_{in}^{*}.$$

Since $\bar{\boldsymbol{E}}_{n}$ is equal to

$$\bar{\boldsymbol{E}}_{n}=\boldsymbol{\Pi}_{n}^{-1}\bar{\boldsymbol{E}}_{N},$$

$\boldsymbol{C}_{in}$ can be rewritten as

$$\begin{align} \boldsymbol{C}_{in} &= \bar{\boldsymbol{E}}_{n}^{\mathsf{T}}(\tilde{\boldsymbol{U}}_{in}^{-1})^{*}\bar{\boldsymbol{E}}_{n} \\\ &= (\boldsymbol{\Pi}_{n}^{-1}\bar{\boldsymbol{E}}_{N})^{\mathsf{T}}(\tilde{\boldsymbol{U}}_{in}^{-1})^{*}\boldsymbol{\Pi}_{n}^{-1}\bar{\boldsymbol{E}}_{N} \\\ &= \bar{\boldsymbol{E}}_{N}^{\mathsf{T}}\boldsymbol{\Pi}_{n}^{-\mathsf{T}}(\tilde{\boldsymbol{U}}_{in}^{-1})^{*}\boldsymbol{\Pi}_{n}^{-1}\bar{\boldsymbol{E}}_{N} \\\ &= \bar{\boldsymbol{E}}_{N}^{\mathsf{T}}\left\{(\boldsymbol{\Pi}_{n}\tilde{\boldsymbol{U}}_{in}\boldsymbol{\Pi}_{n}^{\mathsf{T}})^{*}\right\}^{-1}\bar{\boldsymbol{E}}_{N} \\\ &= \left(\boldsymbol{\Phi}_{in}^{*} - \dfrac{\boldsymbol{\mu}_{in}^{*}\boldsymbol{\mu}_{in}^{\mathsf{T}}}{s_{in}}\right)^{-1}. \end{align}$$

@tky823 tky823 modified the milestones: v0.2.0, v0.3.0 Aug 13, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bss Blind source separation method math Math related issue
Projects
None yet
Development

No branches or pull requests

1 participant