-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_sharpness.py
123 lines (102 loc) · 6.79 KB
/
eval_sharpness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import os
import numpy as np
import torch
import time
import data
import models
import utils
import json
import sharpness
import torch.nn.functional as F
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--model', default='resnet18', type=str)
parser.add_argument('--model_path', type=str, help='model path')
parser.add_argument('--n_eval', default=10000, type=int, help='#examples to evaluate on error')
parser.add_argument('--bs', default=256, type=int, help='batch size for error computation')
parser.add_argument('--n_eval_sharpness', default=1024, type=int, help='#examples to evaluate on sharpness')
parser.add_argument('--bs_sharpness', default=128, type=int, help='batch size for sharpness experiments')
parser.add_argument('--rho', default=0.1, type=float, help='L2 radius for sharpness')
parser.add_argument('--step_size_mult', default=1.0, type=float, help='step size multiplier for sharpness')
parser.add_argument('--n_iters', default=20, type=int, help='number of iterations for sharpness')
parser.add_argument('--n_restarts', default=1, type=int, help='number of restarts for sharpness')
parser.add_argument('--model_width', default=64, type=int, help='model width (# conv filters on the first layer for ResNets)')
parser.add_argument('--sharpness_on_test_set', action='store_true', help='compute sharpness on the test set')
parser.add_argument('--sharpness_rand_init', action='store_true', help='random initialization')
parser.add_argument('--merge_bn_stats', action='store_true', help='merge BN means and variances to its learnable parameters')
parser.add_argument('--no_grad_norm', action='store_true', help='no gradient normalization in APGD')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--algorithm', default='m_apgd_linf', choices=['avg_l2', 'avg_linf', 'm_apgd_l2', 'm_apgd_linf'], type=str)
parser.add_argument('--log_folder', default='logs_eval', type=str)
parser.add_argument('--adaptive', action='store_true')
parser.add_argument('--normalize_logits', action='store_true')
parser.add_argument('--data_augm_sharpness', action='store_true')
return parser.parse_args()
start_time = time.time()
args = get_args()
n_cls = 10 if args.dataset != 'cifar100' else 100
sharpness_split = 'test' if args.sharpness_on_test_set else 'train'
assert args.n_eval_sharpness % args.bs_sharpness == 0, 'args.n_eval should be divisible by args.bs_sharpness'
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
np.set_printoptions(precision=4, suppress=True)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
loss_f = lambda logits, y: F.cross_entropy(logits, y, reduction='mean')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = models.get_model(args.model, n_cls, False, data.shapes_dict[args.dataset], args.model_width, normalize_logits=args.normalize_logits).to(device).eval()
model_dict = torch.load('{}'.format(args.model_path))['last']
model.load_state_dict({k: v for k, v in model_dict.items()})
model = models.LogitNormalizationWrapper(model, normalize_logits=args.normalize_logits)
eval_train_batches = data.get_loaders(args.dataset, args.n_eval, args.bs, split='train', shuffle=False,
data_augm=False, drop_last=False)
eval_test_batches = data.get_loaders(args.dataset, args.n_eval, args.bs, split='test', shuffle=False,
data_augm=False, drop_last=False)
eval_test_corruptions_batches = data.get_loaders(args.dataset + 'c', args.n_eval, args.bs, split='test', shuffle=False,
data_augm=False, drop_last=False)
train_err, train_loss = utils.compute_err(eval_train_batches, model)
test_err, test_loss = utils.compute_err(eval_test_batches, model)
test_err_corrupt, test_loss_corrupt = utils.compute_err(eval_test_corruptions_batches, model)
print('[train] err={:.2%} loss={:.5f}, [test] err={:.2%}, loss={:.4f}, [test corrupted] err={:.2%}, loss={:.4f}'.format(train_err, train_loss, test_err, test_loss, test_err_corrupt, test_loss_corrupt))
batches_sharpness = data.get_loaders(args.dataset, args.n_eval_sharpness, args.bs_sharpness, split=sharpness_split, shuffle=False,
data_augm=args.data_augm_sharpness, drop_last=False, randaug=args.data_augm_sharpness)
if args.algorithm == 'm_apgd_l2':
sharpness_obj, sharpness_err, _, output = sharpness.eval_APGD_sharpness(
model, batches_sharpness, loss_f, train_err, train_loss,
rho=args.rho, n_iters=args.n_iters, n_restarts=args.n_restarts, step_size_mult=args.step_size_mult,
rand_init=args.sharpness_rand_init, no_grad_norm=args.no_grad_norm,
verbose=True, return_output=True, adaptive=args.adaptive, version='default', norm='l2')
if args.algorithm == 'm_apgd_linf':
sharpness_obj, sharpness_err, _, output = sharpness.eval_APGD_sharpness(
model, batches_sharpness, loss_f, train_err, train_loss,
rho=args.rho, n_iters=args.n_iters, n_restarts=args.n_restarts, step_size_mult=args.step_size_mult,
rand_init=args.sharpness_rand_init, no_grad_norm=args.no_grad_norm,
verbose=True, return_output=True, adaptive=args.adaptive, version='default', norm='linf')
if args.algorithm == 'avg_l2':
sharpness_obj, sharpness_err, _, output = sharpness.eval_average_sharpness(
model, batches_sharpness, loss_f, rho=args.rho, n_iters=args.n_iters, return_output=True, adaptive=args.adaptive, norm='l2')
if args.algorithm == 'avg_linf':
sharpness_obj, sharpness_err, _, output = sharpness.eval_average_sharpness(
model, batches_sharpness, loss_f, rho=args.rho, n_iters=args.n_iters, return_output=True, adaptive=args.adaptive, norm='linf')
print('sharpness: obj={:.5f}, err={:.2%}'.format(sharpness_obj, sharpness_err))
### Save all the arguments, train_err, train_loss,test_err, test_loss, sharpness_obj, sharpness_err, sharpness_gradp_norm
checkpoint = dict([(arg, getattr(args, arg)) for arg in vars(args)])
# checkpoint['output'] = output
checkpoint['train_err'] = train_err
checkpoint['train_loss'] = train_loss
checkpoint['test_err'] = test_err
checkpoint['test_loss'] = test_loss
checkpoint['test_err_corrupt'] = test_err_corrupt
checkpoint['test_loss_corrupt'] = test_loss_corrupt
checkpoint['sharpness_obj'] = sharpness_obj
checkpoint['sharpness_err'] = sharpness_err
checkpoint['time'] = (time.time() - start_time) / 60
path = utils.get_path(args, args.log_folder)
if not os.path.exists(args.log_folder):
os.makedirs(args.log_folder)
with open(path, 'w') as outfile:
json.dump(checkpoint, outfile)
print('Done in {:.2f}m'.format((time.time() - start_time) / 60))