forked from cms-patatrack/pixeltrack-standalone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze-results.py
executable file
·111 lines (96 loc) · 4.05 KB
/
analyze-results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
import json
import argparse
import statistics
import collections
cpuCoresSet = None
def analyzeList(names, inputData, peakName):
data = {x:[] for x in names}
for meas in inputData[1:-1]: # skip first and last
for key, lst in data.items():
if key in meas:
lst.append(float(meas[key]))
peak = 0
for key, lst in data.items():
if len(lst) > 0:
if key == peakName:
peak = max(lst)
print(" {}: mean {:.3f} stdev {:3f} min {:3f} max {:3f}".format(key, statistics.mean(lst),
statistics.stdev(lst) if len(lst) > 1 else 0,
min(lst), max(lst)))
return peak
def measurementKey(meas):
if "streams" in meas:
return meas["streams"]
return tuple(m["streams"] for m in meas["programs"])
def hostProcess(data, results, key):
for res in data["results"]:
if not "monitor" in res:
continue
mon = res["monitor"]
if "host" in mon:
if "process" in mon["host"]:
print("Host:")
results[measurementKey(res)][key].append(analyzeList([key], mon["host"]["process"], key))
elif "processes" in mon["host"]:
procs = mon["host"]["processes"]
mem = []
for i in range(1, len(procs[0])-1):
s = 0
for p in procs:
s += p[i][key]
mem.append(dict(rss=s))
results[measurementKey(res)][key].append(analyzeList([key], mem, key))
def hostMemory(data, results):
hostProcess(data, results, "rss")
def hostUtilization(data, results):
hostProcess(data, results, "utilization")
def hostClock(data, results):
for res in data["results"]:
if not "monitor" in res:
continue
mon = res["monitor"]
if "host" in mon:
if "cpu" in mon["host"]:
for core in mon["host"]["cpu"]:
if cpuCoresSet is None or int(core) in cpuCoresSet:
print(core)
results[measurementKey(res)]["cpuClock {}".format(core)].append(analyzeList(["clock"], mon["host"]["cpu"][core], "clock"))
def cudaStats(data, results):
for res in data["results"]:
if not "monitor" in res:
continue
mon = res["monitor"]
if "cuda" in mon:
for dev in mon["cuda"]:
print("CUDA {}".format(dev))
results[measurementKey(res)]["gpuMem"].append(analyzeList(["temperature","clock","proc_mem_use"], mon["cuda"][dev], "proc_mem_use"))
def throughput(data, results):
for res in data["results"]:
results[measurementKey(res)]["throughput"].append(res["throughput"])
def cpueff(data, results):
for res in data["results"]:
results[measurementKey(res)]["cpueff"].append(res["cpueff"])
def main(opts):
with open(opts.file) as inp:
data = json.load(inp)
results = collections.defaultdict(lambda: collections.defaultdict(list))
throughput(data, results)
cpueff(data, results)
hostMemory(data, results)
# hostUtilization(data, results)
# hostClock(data, results)
cudaStats(data, results)
print()
for st, res in results.items():
print("Streams {}".format(st))
for key, values in res.items():
print(" {}: mean {:.3f} stdev {:3f} min {:3f} max {:3f}".format(key, statistics.mean(values),
statistics.stdev(values) if len(values) > 1 else 0,
min(values), max(values)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Analyze monitoring data in result JSON files")
parser.add_argument("file", type=str,
help="Path to JSON file to analyze")
opts = parser.parse_args()
main(opts)