forked from cms-patatrack/pixeltrack-standalone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrajectoryStateSoA.h
59 lines (50 loc) · 1.87 KB
/
TrajectoryStateSoA.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#ifndef CUDADataFormatsTrackTrajectoryStateSOA_H
#define CUDADataFormatsTrackTrajectoryStateSOA_H
#include <Eigen/Dense>
#include "CUDACore/eigenSoA.h"
template <int32_t S>
struct TrajectoryStateSoA {
using Vector5f = Eigen::Matrix<float, 5, 1>;
using Vector15f = Eigen::Matrix<float, 15, 1>;
using Vector5d = Eigen::Matrix<double, 5, 1>;
using Matrix5d = Eigen::Matrix<double, 5, 5>;
static constexpr int32_t stride() { return S; }
eigenSoA::MatrixSoA<Vector5f, S> state;
eigenSoA::MatrixSoA<Vector15f, S> covariance;
template <typename V3, typename M3, typename V2, typename M2>
__host__ __device__ inline void copyFromCircle(
V3 const& cp, M3 const& ccov, V2 const& lp, M2 const& lcov, float b, int32_t i) {
state(i) << cp.template cast<float>(), lp.template cast<float>();
state(i)(2) *= b;
auto cov = covariance(i);
cov(0) = ccov(0, 0);
cov(1) = ccov(0, 1);
cov(2) = b * float(ccov(0, 2));
cov(4) = cov(3) = 0;
cov(5) = ccov(1, 1);
cov(6) = b * float(ccov(1, 2));
cov(8) = cov(7) = 0;
cov(9) = b * b * float(ccov(2, 2));
cov(11) = cov(10) = 0;
cov(12) = lcov(0, 0);
cov(13) = lcov(0, 1);
cov(14) = lcov(1, 1);
}
template <typename V5, typename M5>
__host__ __device__ inline void copyFromDense(V5 const& v, M5 const& cov, int32_t i) {
state(i) = v.template cast<float>();
for (int j = 0, ind = 0; j < 5; ++j)
for (auto k = j; k < 5; ++k)
covariance(i)(ind++) = cov(j, k);
}
template <typename V5, typename M5>
__host__ __device__ inline void copyToDense(V5& v, M5& cov, int32_t i) const {
v = state(i).template cast<typename V5::Scalar>();
for (int j = 0, ind = 0; j < 5; ++j) {
cov(j, j) = covariance(i)(ind++);
for (auto k = j + 1; k < 5; ++k)
cov(k, j) = cov(j, k) = covariance(i)(ind++);
}
}
};
#endif // CUDADataFormatsTrackTrajectoryStateSOA_H