-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
executable file
·187 lines (165 loc) · 5.08 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# %%
from shiny import App, render, ui, reactive
import os
from askalex import answer_question, get_keywords, show_cost
from openalex import find_abs, get_embed, search_docs, style_dataframe
# %%
sample_keys = ["TYK2", "DLBCL", "ProTiler"]
model_engine_dict = {
"gpt-4-32k": "gpt-4-32k (slower)",
"gpt-4": "gpt-4",
"gpt-35-turbo-16k": "gpt-35-turbo-16k",
"gpt-35-turbo": "gpt-35-turbo (faster)",
}
oa_sample_questions = [
# "On a scale from 0—10, what score would you give the gene BRCA1 for its association with breast cancer?",
# "What are some key points about TYK2?",
# "How do current clinical guidelines address the use of anticoagulants in patients with atrial fibrillation?",
# "How does the effectiveness of traditional chemotherapy compare to targeted therapies in the treatment of leukemia?",
# "What are the key differences between the molecular mechanisms of apoptosis and necrosis?",
"How does tau malfunction in Alzheimer's?",
"How does FTO affect obesity risk?",
"What is hydroxychloroquine's efficacy in rheumatoid arthritis?",
"How reliable is CRP as an inflammation marker?",
"How does the Mediterranean diet reduce heart disease risk?",
"How does Epstein-Barr virus lead to lymphoma?",
]
if os.getenv("APP_RUN") == "local":
bms_proxy = "http://proxy-server.bms.com:8080/"
os.environ["http_proxy"] = bms_proxy
os.environ["https_proxy"] = bms_proxy
os.environ["ftp_proxy"] = bms_proxy
os.environ["no_proxy"] = ".celgene.com,.bms.com"
my_nav = [
ui.nav(
"",
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_select(
"oa_engine",
"LLM model",
model_engine_dict,
),
ui.input_slider(
"n_articles",
"Number of articles to index:",
min=3,
max=20,
value=6,
),
ui.p("Estimated cost:"),
ui.output_text("oa_cost"),
),
ui.panel_main(
ui.input_switch("oa_sample", "Use an example", False),
ui.output_ui("out_question"),
ui.input_action_button("oa_submit", "Submit"),
ui.output_text("oa_txt"),
),
),
ui.output_table("oa_articles_tab"),
),
ui.nav_spacer(),
ui.nav_menu(
"🔗",
ui.nav_control(
ui.a(
"Source code",
href="https://github.com/trangdata/askalex",
target="_blank",
),
),
align="right",
),
]
app_ui = ui.page_navbar(
my_nav,
title="🦙 AskAlex",
bg="#014b75",
inverse=True,
id="navbar_id",
)
def server(input, output, session):
ids: list[str] = []
@output
@render.ui
@reactive.event(
input.oa_quick_submit,
input.oa_submit,
input.ps_submit,
)
def refs():
return ui.h4("References")
def embedded_abs(abs):
if abs is None:
return None
nonlocal ids
id = ui.notification_show("Computing embeddings...", duration=None)
ids.append(id)
emb = get_embed(abs)
return emb
## OpenAlex tab: Custom: oa_
@reactive.Calc
@reactive.event(input.oa_submit)
def oa_articles():
df = search_docs(
embedded_abs(find_abs(get_keywords(input.oa_question()))),
input.oa_question(),
top_n=input.n_articles(),
)
return df
@output
@render.table
def oa_articles_tab():
if oa_articles() is None:
return None
return style_dataframe(oa_articles()).style.hide(axis="index")
result = reactive.Value()
@reactive.Effect
@reactive.event(input.oa_submit)
def _():
nonlocal ids
if oa_articles() is None:
return None
notif = ui.notification_show("Connecting to OpenAI...", duration=30)
answer = answer_question(
question=input.oa_question(),
df=oa_articles(),
model=input.oa_engine(),
)
ui.notification_remove(notif)
if ids:
ui.notification_remove(ids.pop())
result.set(answer)
@output
@render.text
def oa_txt():
res = result.get()
if res is not None:
return f"\n{res[0]}"
@output
@render.text
def oa_cost():
res = result.get()
if res is not None:
return show_cost(res[1][0])
@output
@render.ui
def out_question():
if input.oa_sample():
return ui.input_select(
"oa_question",
"",
oa_sample_questions,
selected=oa_sample_questions[0],
width="100%",
)
return (
ui.input_text(
"oa_question",
"",
placeholder="What is mTOR's role in aging?",
width="100%",
),
)
app = App(app_ui, server, debug=True)