forked from jkjung-avt/tensorrt_demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrtNet.h
115 lines (101 loc) · 3.64 KB
/
trtNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// trtNet.h
#ifndef __TRTNET_H__
#define __TRTNET_H__
#include <cassert>
#include <iostream>
#include <cstring>
#include <sstream>
#include <fstream>
#include <cuda_runtime_api.h>
#include "NvInfer.h"
#include "NvCaffeParser.h"
using namespace nvinfer1;
using namespace nvcaffeparser1;
namespace trtnet {
class Logger : public ILogger
{
void log(Severity severity, const char *msg) override
{
if (severity != Severity::kINFO)
std::cout << msg << std::endl;
}
};
class IHostMemoryFromFile : public IHostMemory
{
public:
IHostMemoryFromFile(std::string filename) {
std::ifstream infile(filename, std::ifstream::binary |
std::ifstream::ate);
_s = infile.tellg();
infile.seekg(0, std::ios::beg);
_mem = malloc(_s);
infile.read(reinterpret_cast<char*>(_mem), _s);
}
#if NV_TENSORRT_MAJOR <= 5
void* data() const { return _mem; }
std::size_t size() const { return _s; }
DataType type () const { return DataType::kFLOAT; } // not used
void destroy() { free(_mem); }
#else // NV_TENSORRT_MAJOR
void* data() const noexcept { return _mem; }
std::size_t size() const noexcept { return _s; }
DataType type () const noexcept { return DataType::kFLOAT; } // not used
void destroy() noexcept { free(_mem); }
#endif // NV_TENSORRT_MAJOR
private:
void *_mem{nullptr};
std::size_t _s;
};
class TrtGooglenet
{
public:
TrtGooglenet();
// init from engine file
void initEngine(std::string filePath, int dataDims[3], int probDims[3]);
void forward(float *imgs, float *prob);
void destroy();
private:
Logger _gLogger;
IHostMemory *_gieModelStream{nullptr};
IRuntime *_runtime;
ICudaEngine *_engine;
IExecutionContext *_context;
cudaStream_t _stream;
void *_gpu_buffers[2];
int _blob_sizes[2];
int _binding_data;
int _binding_prob;
void _initEngine(std::string filePath);
};
class TrtMtcnnDet
{
public:
TrtMtcnnDet();
// init from engine file
void initDet1(std::string filePath, int dataDims[3], int prob1Dims[3], int boxesDims[3]);
void initDet2(std::string filePath, int dataDims[3], int prob1Dims[3], int boxesDims[3]);
void initDet3(std::string filePath, int dataDims[3], int prob1Dims[3], int boxesDims[3], int marksDims[3]);
void setBatchSize(int value);
int getBatchSize();
void forward(float *imgs, float *probs, float *boxes, float *);
void destroy();
private:
Logger _gLogger;
IHostMemory *_gieModelStream{nullptr};
IRuntime *_runtime;
ICudaEngine *_engine;
IExecutionContext *_context;
cudaStream_t _stream;
void *_gpu_buffers[4];
int _blob_sizes[4];
int _num_bindings = 0;
int _binding_data;
int _binding_prob1;
int _binding_boxes;
int _binding_marks;
int _batchsize = 0;
void _initEngine(std::string filePath, const char *dataName, const char *prob1Name, const char *boxesName, const char *marksName);
void _setBlobSizes(int dataDims[3], int prob1Dims[3], int boxesDims[3]);
};
} // namespace trtnet
#endif // __TRTNET_H__