From fe8a301c96e7463b36bf08e7c98b81a9b4740ce9 Mon Sep 17 00:00:00 2001 From: Eric Wieser Date: Mon, 21 Oct 2024 15:48:26 +0000 Subject: [PATCH] Fix uses of optParam --- lean4/src/putnam_1970_a1.lean | 3 ++- lean4/src/putnam_1982_a6.lean | 3 ++- lean4/src/putnam_1998_a6.lean | 3 ++- 3 files changed, 6 insertions(+), 3 deletions(-) diff --git a/lean4/src/putnam_1970_a1.lean b/lean4/src/putnam_1970_a1.lean index 255a7e6c..f68fed85 100644 --- a/lean4/src/putnam_1970_a1.lean +++ b/lean4/src/putnam_1970_a1.lean @@ -14,6 +14,7 @@ theorem putnam_1970_a1 (f_def : f = fun x : ℝ => Real.exp (a*x) * Real.cos (b*x)) (p : ℕ → ℝ) (hp : ∃ c : ℝ, c > 0 ∧ ∀ x ∈ ball 0 c, ∑' n : ℕ, (p n)*x^n = f x) -(S : Set ℕ := {n : ℕ | p n = 0}) +(S : Set ℕ) +(S_def : S = {n : ℕ | p n = 0}) : S = ∅ ∨ ¬Finite S := sorry diff --git a/lean4/src/putnam_1982_a6.lean b/lean4/src/putnam_1982_a6.lean index ba2b07af..a024480c 100644 --- a/lean4/src/putnam_1982_a6.lean +++ b/lean4/src/putnam_1982_a6.lean @@ -18,7 +18,8 @@ $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$ -/ theorem putnam_1982_a6 -(S : Set ℕ := Ici 1) +(S : Set ℕ) +(S_def : S = Ici 1) (hb : (ℕ → ℕ) → Prop) (hb_def : hb = fun b : ℕ → ℕ => BijOn b S S) (hx : (ℕ → ℝ) → Prop) diff --git a/lean4/src/putnam_1998_a6.lean b/lean4/src/putnam_1998_a6.lean index 1f1d90d9..9a75f868 100644 --- a/lean4/src/putnam_1998_a6.lean +++ b/lean4/src/putnam_1998_a6.lean @@ -13,6 +13,7 @@ theorem putnam_1998_a6 (hint : ∀ i : Fin 2, ∃ a b c : ℤ, A i = a ∧ B i = b ∧ C i = c) (htriangle : A ≠ B ∧ A ≠ C ∧ B ≠ C) (harea : (dist A B + dist B C) ^ 2 < 8 * (MeasureTheory.volume (convexHull ℝ {A, B, C})).toReal + 1) -(threesquare : (EuclideanSpace ℝ (Fin 2)) → (EuclideanSpace ℝ (Fin 2)) → (EuclideanSpace ℝ (Fin 2)) → Prop := fun P Q R ↦ dist Q P = dist Q R ∧ Matrix.dotProduct (P - Q) (R - Q) = 0) +(threesquare : (EuclideanSpace ℝ (Fin 2)) → (EuclideanSpace ℝ (Fin 2)) → (EuclideanSpace ℝ (Fin 2)) → Prop) +(threesquare_def : threesquare = fun P Q R ↦ dist Q P = dist Q R ∧ Matrix.dotProduct (P - Q) (R - Q) = 0) : (threesquare A B C ∨ threesquare B C A ∨ threesquare C A B) := sorry