From c6be8d3a8f65d705ecbfa17e56a0277b88800b8d Mon Sep 17 00:00:00 2001 From: Oliver Nash Date: Fri, 10 Jan 2025 16:37:57 +0000 Subject: [PATCH] Fix 2012 A4 This was disprovable because of the `n > 2` condition in the goal. For example if we take: * $q = 101$ * $r = 1$ * $A = [0, 100]$ * $B = [1, 2]$ Then $S = \{1, 2\}$ and there is no three-or-more term arithmetic progression whose intersection with $A$ is $S$. --- lean4/src/putnam_2012_a4.lean | 24 ++++++++++++++---------- 1 file changed, 14 insertions(+), 10 deletions(-) diff --git a/lean4/src/putnam_2012_a4.lean b/lean4/src/putnam_2012_a4.lean index 8a9a6c61..9834700b 100644 --- a/lean4/src/putnam_2012_a4.lean +++ b/lean4/src/putnam_2012_a4.lean @@ -6,13 +6,17 @@ open Matrix Function Let $q$ and $r$ be integers with $q>0$, and let $A$ and $B$ be intervals on the real line. Let $T$ be the set of all $b+mq$ where $b$ and $m$ are integers with $b$ in $B$, and let $S$ be the set of all integers $a$ in $A$ such that $ra$ is in $T$. Show that if the product of the lengths of $A$ and $B$ is less than $q$, then $S$ is the intersection of $A$ with some arithmetic progression. -/ theorem putnam_2012_a4 -(q r : ℤ) -(A B : Fin 2 → ℝ) -(T : Set ℝ) -(S : Set ℤ) -(qpos : q > 0) -(ABlt : A 0 < A 1 ∧ B 0 < B 1) -(hT : T = {x : ℝ | ∃ b m : ℤ, ((b : ℝ) ∈ Set.Icc (B 0) (B 1)) ∧ (x = b + m * q)}) -(hS : S = {a : ℤ | ((a : ℝ) ∈ Set.Icc (A 0) (A 1)) ∧ (∃ t ∈ T, r * a = t)}) -: ((A 1 - A 0) * (B 1 - B 0) < q) → (∃ n : ℕ, ∃ a1 d : ℝ, n > 2 ∧ {s : ℝ | s = round s ∧ round s ∈ S} = (Set.Icc (A 0) (A 1)) ∩ {x : ℝ | ∃ i : Fin n, x = a1 + i * d}) := -sorry + (IsFiniteAP : Set ℤ → Prop) + (IsFiniteAP_def : ∀ s, + IsFiniteAP s ↔ ∃ n : ℕ, ∃ a d : ℤ, 0 < d ∧ s = {a + i * d | i : Fin n}) + (q r : ℤ) + (A B : Fin 2 → ℝ) + (T : Set ℤ) + (S : Set ℤ) + (qpos : q > 0) + (ABlt : A 0 < A 1 ∧ B 0 < B 1) + (hT : T = {x : ℤ | ∃ b m : ℤ, (b : ℝ) ∈ Set.Icc (B 0) (B 1) ∧ x = b + m * q}) + (hS : S = {a : ℤ | (a : ℝ) ∈ Set.Icc (A 0) (A 1) ∧ r * a ∈ T}) + (prod_lt : (A 1 - A 0) * (B 1 - B 0) < q) : + IsFiniteAP {x | x ∈ S ∧ (x : ℝ) ∈ Set.Icc (A 0) (A 1)} := + sorry