This uses a pretty simple search algorithm that doesn't necessarily return the Taxicab numbers in order. Assuming we want all the Taxicab numbers within some range S to N, we'll search until we find N values. When we find the Nth value, we continue to search up to the cube root of the largest Taxicab number found up to that point. That ensures we will find all of them inside the desired range without needing to search arbitrarily or use magic numbers. Defaults to returning the Taxicab numbers from 1 to 25. Pass in a different start and end value if you want some other range.
constant @cu = (^Inf).map: { .³ }
sub MAIN ($start = 1, $end = 25) {
my %taxi;
my int $taxis = 0;
my $terminate = 0;
my int $max = 0;
for 1 .. * -> $c1 {
last if ?$terminate && ($terminate < $c1);
for 1 .. $c1 -> $c2 {
my $this = @cu[$c1] + @cu[$c2];
%taxi{$this}.push: [$c2, $c1];
if %taxi{$this}.elems == 2 {
++$taxis;
$max max= $this;
}
$terminate = ceiling $max ** (1/3) if $taxis == $end and !$terminate;
}
}
display( %taxi, $start, $end );
}
sub display (%this_stuff, $start, $end) {
my $i = $start;
printf "%4d %10d =>\t%s\n", $i++, $_.key,
(.value.map({ sprintf "%4d³ + %-s\³", |$_ })).join: ",\t"
for %this_stuff.grep( { $_.value.elems > 1 } ).sort( +*.key )[$start-1..$end-1];
}
1 1729 => 9³ + 10³, 1³ + 12³
2 4104 => 9³ + 15³, 2³ + 16³
3 13832 => 18³ + 20³, 2³ + 24³
4 20683 => 19³ + 24³, 10³ + 27³
5 32832 => 18³ + 30³, 4³ + 32³
6 39312 => 15³ + 33³, 2³ + 34³
7 40033 => 16³ + 33³, 9³ + 34³
8 46683 => 27³ + 30³, 3³ + 36³
9 64232 => 26³ + 36³, 17³ + 39³
10 65728 => 31³ + 33³, 12³ + 40³
11 110656 => 36³ + 40³, 4³ + 48³
12 110808 => 27³ + 45³, 6³ + 48³
13 134379 => 38³ + 43³, 12³ + 51³
14 149389 => 29³ + 50³, 8³ + 53³
15 165464 => 38³ + 48³, 20³ + 54³
16 171288 => 24³ + 54³, 17³ + 55³
17 195841 => 22³ + 57³, 9³ + 58³
18 216027 => 22³ + 59³, 3³ + 60³
19 216125 => 45³ + 50³, 5³ + 60³
20 262656 => 36³ + 60³, 8³ + 64³
21 314496 => 30³ + 66³, 4³ + 68³
22 320264 => 32³ + 66³, 18³ + 68³
23 327763 => 51³ + 58³, 30³ + 67³
24 373464 => 54³ + 60³, 6³ + 72³
25 402597 => 56³ + 61³, 42³ + 69³
With passed parameters 2000 2006:
2000 1671816384 => 940³ + 944³, 428³ + 1168³
2001 1672470592 => 632³ + 1124³, 29³ + 1187³
2002 1673170856 => 828³ + 1034³, 458³ + 1164³
2003 1675045225 => 744³ + 1081³, 522³ + 1153³
2004 1675958167 => 711³ + 1096³, 492³ + 1159³
2005 1676926719 => 714³ + 1095³, 63³ + 1188³
2006 1677646971 => 891³ + 990³, 99³ + 1188³