-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhfhi.py
175 lines (122 loc) · 4.28 KB
/
hfhi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy
import cmath
mecgs = 9.1094e-28
qecgs = 4.8032e-10
ccgs = 29979000000
mypi = 3.1415926
def omegap(density):
result=numpy.sqrt(4*mypi*qecgs*qecgs*density/mecgs)
return result
def ncrit(lambdamic):
omega0=ccgs*2.0*mypi/(lambdamic/10000)
result=omega0*omega0*mecgs/(4*mypi*qecgs*qecgs)
return result
def ve(te):
teerg = te*1.602e-12
result=numpy.sqrt(teerg/mecgs*3)
return result
def vth(te):
teerg = te*1.602e-12
result=numpy.sqrt(teerg/mecgs)
return result
def betawig(te, ionefour,lnmic,nppmp):
result = numpy.sqrt(.75)*numpy.power((ve(te)/ccgs),2)/vowiggle(ionefour,lnmic,nppmp)
return result
def vowiggle(ionefour,lambdamic,nppmp):
result=numpy.sqrt(nppmp)*numpy.sqrt(1-nppmp)/2*vosc(ionefour,lambdamic);
return result
def vosc(ionefour,lambdamic):
inorm=ionefour*10**21
result=numpy.sqrt((inorm*qecgs*qecgs*8.0*mypi)/
((ccgs*2.0*mypi/(lambdamic*1e-4))**2*mecgs*mecgs*ccgs))/ccgs;
return result
def ch_hyb(tev,ionefour,lnmic,lambdamic):
result=0.5*numpy.sqrt(0.75)*3*vth(tev)*vth(tev)/(ccgs*ccgs)*betawig(tev,ionefour,lambdamic,0.25)
return result
def cinh_hyb(ionefour,lnmic,lambdamic):
result=0.5*epsln(lnmic,lambdamic,0.25,1)/vowiggle(ionefour,lambdamic,0.25)**1.5
return result
def epsln(lnmic,lambdamic,nppmp,order):
result=nppmp**(1/order)/(2*mypi*lnmic/lambdamic)
return result
def gamma_real_hyb(eta,tev,ionefour,lnmic,lambdamic,fac):
vowig_int=vowiggle(ionefour,lambdamic,0.25)
ch_int=ch_hyb(tev,ionefour,lnmic,lambdamic)
tau = eta*eta/vowig_int
cinh_int=cinh_hyb(ionefour,lnmic,lambdamic)
result=vowig_int*(1.0-ch_int * tau - cinh_int/((1+tau*tau)**(0.25))*numpy.sin(mypi/4+0.5*numpy.arctan(tau)))
return result
def cmult(tev,ionefour,lnmic,lambdamic):
result=18.4*(ionefour*lambdamic**2)*(lnmic/lambdamic)/tev
return result
def cmult_srs(ionefour,lnmic,lambdamic):
result=(ionefour**0.75*lambdamic**0.5)*(lnmic)/155.0
return result
def gamma_real(eta,tev,ionefour,lnmic,lambdamic,state):
cmult_int=cmult(tev,ionefour,lnmic,lambdamic)
beta_int = betawig(tev,ionefour,lambdamic,0.25)
vo_int=vowiggle(ionefour,lambdamic,0.25)
result=vo_int*(1.0-0.5*beta_int*beta_int*eta*eta-(2*state+1)*((2/3)**(1.5))/(cmult_int*eta*beta_int))
return result
def envelope(t,t_delay,t_rise,t_flat,t_fall):
if (t<t_delay):
result=0.0
elif (t < (t_delay+t_rise)):
result=envelope_norm((t-t_delay)/t_rise)
elif (t <= (t_delay+t_rise+t_flat)):
result = 1.0
elif (t < (t_delay+t_rise+t_flat+t_fall)):
result = envelope_norm_rev((t-t_delay-t_rise-t_flat)/t_fall)
else:
result = 0.0
return result
def envelope_norm(tau):
if (tau<=1.0):
result = 10*tau**3-15*tau**4+6*tau**5
else:
result = 0.0
return result
def envelope_norm_rev(tau):
if (tau<=1.0):
result = envelope_norm(1.0-tau)
else:
result = 0.0
return result
def kplus_para(kperp):
epsoverfour= 0.75/4.0
return numpy.sqrt(kperp*kperp + epsoverfour) + numpy.sqrt(epsoverfour)
def kminus_para(kperp):
epsoverfour = 0.75/4.0
return numpy.sqrt(kperp*kperp + epsoverfour) - numpy.sqrt(epsoverfour)
def kplus_sq(kperp):
epsoverfour = 0.75/4.0
kplus = numpy.sqrt(kperp*kperp + epsoverfour) + numpy.sqrt(epsoverfour)
return kplus*kplus + kperp*kperp
def kminus_sq(kperp):
epsoverfour = 0.75/4.0
kminus = numpy.sqrt(kperp*kperp + epsoverfour) - numpy.sqrt(epsoverfour)
return kminus*kminus + kperp*kperp
def density_match(kperp,tev):
mecgs = 9.1094e-28
qecgs = 4.8032e-10
ccgs = 29979000000
mypi = 3.1415926
ve=vth(tev)/ccgs
return (0.25 * (1+numpy.sqrt(1-12*ve*ve*(kplus_sq(kperp)+kminus_sq(kperp)))))**2.0
def tpd_match_func(wp,eta,tev):
ve=vth(tev)/ccgs
# DEBUG
# print(ve)
# print(kplus_sq(eta))
# print(kminus_sq(eta))
# DEBUG
return numpy.sqrt(wp*wp+3*ve*ve*kplus_sq(eta)) + numpy.sqrt(wp*wp+3*ve*ve*kminus_sq(eta)) - 1.0
def density_match_exact(kperp,tev):
from scipy import optimize
def test(wp):
return tpd_match_func(wp,kperp,tev)
test2=optimize.root_scalar(test,x0=0.50,x1=0.49,method='secant')
# DEBUG
# print(test2)
# DEBUG
return test2.root*test2.root