-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuggingface_loader.py
105 lines (93 loc) · 3.46 KB
/
huggingface_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import annotations
from random import choice, randrange
import pandas as pd
from datasets import load_dataset
# --- XXX remove
pd.options.mode.chained_assignment = None
class loadHF:
"""Load dataset from HuggingFace"""
def __init__(
self, dataset_name: str = "newspop", split_name: str = "train"
) -> None:
self.dataset_name = dataset_name
self.split_name = split_name
self.dataset = None
def load_preprocessed_df(self, default_preprocess: str = "newspop") -> None:
"""
Main interface for the user
Load and preprocess a dataset from HuggingFace
"""
self.load_df()
self.preprocess_df(default_preprocess=default_preprocess)
def load_dataset(self) -> None:
"""
Uses load_dataset() from Huggingface's 'datasets' package
"""
self.dataset = load_dataset(self.dataset_name)
def load_df(self) -> None:
"""
Loads the dataset as dataframe
"""
print(f"[INFO] load dataframe, split: {self.split_name}...")
if self.dataset is None:
self.load_dataset()
self.dataset_df_all = pd.DataFrame(self.dataset[self.split_name])
def preprocess_df(self, default_preprocess="newspop") -> None:
"""
Preprocesses the dataframe into the appropriate form for later use
"""
if default_preprocess == "newspop":
self.default_preprocess_newspop()
def default_preprocess_newspop(self) -> None:
"""
Preprocesses dataframe for "newspop" dataset
"""
print("[INFO] preprocess...")
# Select columns
use_cols = ["headline", "publish_date", "topic"]
dataset_df = self.dataset_df_all[use_cols]
# Simplify the dates in the publish_date column
list_datetimes = self._list_default_datetimes()
dataset_df["publish_date"] = [
choice(list_datetimes) for x in range(len(dataset_df))
]
# timeline and post IDs
dataset_df["timeline_id"] = dataset_df["publish_date"].apply(
lambda x: list_datetimes.index(x)
)
dataset_df["post_id"] = [randrange(10) for x in range(len(dataset_df))]
# Convert publish_date to datetime
dataset_df["publish_date"] = pd.to_datetime(
dataset_df["publish_date"], format="%Y-%m-%d %H:%M:%S"
)
# Rename the columns
rename_cols = {
"headline": "content",
"publish_date": "datetime",
"topic": "label",
"timeline_id": "timeline_id",
"post_id": "post_id",
}
dataset_df = dataset_df.rename(columns=rename_cols)
# Encode labels
encode_labels = {
"label": {"economy": 2, "obama": 1, "microsoft": 0, "palestine": 0}
}
self.dataset_df = dataset_df.replace(encode_labels)
print("[INFO] preprocessed dataframe can be accessed: .dataset_df")
def _list_default_datetimes(self) -> list[str]:
list_datetimes = [
"2015-01-01 00:00:00",
"2015-01-01 00:12:00",
"2015-01-02 00:00:00",
"2015-01-02 00:12:00",
"2015-01-03 00:00:00",
"2015-01-03 00:12:00",
"2015-01-04 00:00:00",
"2015-01-04 00:12:00",
"2015-01-05 00:00:00",
"2015-01-05 00:12:00",
"2015-01-06 00:00:00",
"2015-01-06 00:12:00",
]
return list_datetimes