-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseqsignet_attention_bilstm.py
188 lines (169 loc) · 7.45 KB
/
seqsignet_attention_bilstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from __future__ import annotations
import torch
import torch.nn as nn
from sig_networks.feature_concatenation import FeatureConcatenation
from sig_networks.ffn_baseline import FeedforwardNeuralNetModel
from sig_networks.swmhau import SWMHAU
class SeqSigNetAttentionBiLSTM(nn.Module):
"""
MHA applied to Deep Signature Neural Network Units for classification.
"""
def __init__(
self,
input_channels: int,
output_channels: int,
num_features: int,
embedding_dim: int,
log_signature: bool,
sig_depth: int,
num_heads: int,
num_layers: int,
hidden_dim_lstm: int,
hidden_dim_ffn: list[int] | int,
output_dim: int,
dropout_rate: float,
pooling: str,
reverse_path: bool = False,
augmentation_type: str = "Conv1d",
hidden_dim_aug: list[int] | int | None = None,
comb_method: str = "concatenation",
):
"""
SeqSigNetAttentionBiLSTM network for classification.
Input data will have the size: [batch size, window size (w),
all embedding dimensions (history + time + post), unit size (n)]
Note: unit sizes will be in reverse chronological order, starting
from the more recent and ending with the one further back in time.
Parameters
----------
input_channels : int
Dimension of the embeddings in the path that will be passed in.
output_channels : int
Requested dimension of the embeddings after convolution layer.
num_features : int
Number of time features to add to FFN input. If none, set to zero.
embedding_dim: int
Dimensions of current BERT post embedding. Usually 384 or 768.
log_signature : bool
Whether or not to use the log signature or standard signature.
sig_depth : int
The depth to truncate the path signature at.
num_heads : int
The number of heads in the Multihead Attention blocks.
num_layers : int
The number of layers in the SWMHAU.
hidden_dim_lstm : int
Dimensions of the hidden layers in the final BiLSTM applied to the output
of the SWMHA units.
hidden_dim_ffn : list[int] | int
Dimension of the hidden layers in the FFN.
output_dim : int
Dimension of the output layer in the FFN.
dropout_rate : float
Dropout rate in the FFN, BiLSTM and SWMHAU.
pooling: str | None
Pooling operation to apply in SWMHAU to obtain history representation.
Options are:
- "signature": apply signature on a FFN of the MHA units at the end
to obtain the final history representation
- "cls": introduce a CLS token and return the MHA output for this token
reverse_path : bool, optional
Whether or not to reverse the path before passing it through the
signature layers, by default False.
augmentation_type : str, optional
Method of augmenting the path, by default "Conv1d".
Options are:
- "Conv1d": passes path through 1D convolution layer.
- "signatory": passes path through `Augment` layer from `signatory` package.
hidden_dim_aug : list[int] | int | None
Dimensions of the hidden layers in the augmentation layer.
Passed into `Augment` class from `signatory` package if
`augmentation_type='signatory'`, by default None.
comb_method : str, optional
Determines how to combine the path signature and embeddings,
by default "gated_addition".
Options are:
- concatenation: concatenation of path signature and embedding vector
- gated_addition: element-wise addition of path signature
and embedding vector
- gated_concatenation: concatenation of linearly gated path signature
and embedding vector
- scaled_concatenation: concatenation of single value scaled path
signature and embedding vector
"""
super().__init__()
# SWMHAU applied to the input (the unit includes the convolution layer)
self.swmhau = SWMHAU(
input_channels=input_channels,
output_channels=output_channels,
log_signature=log_signature,
sig_depth=sig_depth,
num_heads=num_heads,
num_layers=num_layers,
dropout_rate=dropout_rate,
pooling=pooling,
reverse_path=reverse_path,
augmentation_type=augmentation_type,
hidden_dim_aug=hidden_dim_aug,
)
# BiLSTM that processes the outputs from SWMHAUs for each window
self.hidden_dim_lstm = hidden_dim_lstm
self.lstm_sig = nn.LSTM(
input_size=self.swmhau.swmha.signature_terms,
hidden_size=self.hidden_dim_lstm,
num_layers=1,
batch_first=True,
bidirectional=True,
)
# determining how to concatenate features to the SWMHAU features
self.embedding_dim = embedding_dim
self.num_features = num_features
self.comb_method = comb_method
self.feature_concat = FeatureConcatenation(
input_dim=self.hidden_dim_lstm,
num_features=self.num_features,
embedding_dim=self.embedding_dim,
comb_method=self.comb_method,
)
# FFN for classification
# make sure hidden_dim_ffn a list of integers
if isinstance(hidden_dim_ffn, int):
hidden_dim_ffn = [hidden_dim_ffn]
self.hidden_dim_ffn = hidden_dim_ffn
self.ffn = FeedforwardNeuralNetModel(
input_dim=self.feature_concat.output_dim,
hidden_dim=self.hidden_dim_ffn,
output_dim=output_dim,
dropout_rate=dropout_rate,
)
def forward(self, path: torch.Tensor, features: torch.Tensor | None = None):
# path has dimensions [batch, units, history, channels]
# features has dimensions [batch, num_features+embedding_dim]
# SWMHAU for each history window by flattening and unflattening the path
# first flatten the path to a three-dimensional tensor of
# dimensions [batch*units, history, channels]
out_flat = path.flatten(0, 1)
# apply SWMHAU to out_flat
out = self.swmhau(out_flat)
# unflatten out to have dimensions [batch, units, hidden_dim]
out = out.unflatten(0, (path.shape[0], path.shape[1]))
# order sequences based on sequence length of input
# for each item in the batch dimension, find the number of non-zero windows
# (i.e. the number of windows that are not fully padded with zeros)
seq_lengths = torch.sum(torch.sum(path, (2, 3)) != 0, 1)
seq_lengths, perm_idx = seq_lengths.sort(0, descending=True)
out = out[perm_idx]
out = torch.nn.utils.rnn.pack_padded_sequence(
out, seq_lengths.cpu(), batch_first=True
)
# BiLSTM that combines all deepsignet windows together
_, (out, _) = self.lstm_sig(out)
out = out[-1, :, :] + out[-2, :, :]
# reverse sequence padding
inverse_perm = torch.argsort(perm_idx)
out = out[inverse_perm]
# combine with features provided
out = self.feature_concat(out, features)
# FFN
out = self.ffn(out.float())
return out