-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswnu.py
361 lines (318 loc) · 13.5 KB
/
swnu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from __future__ import annotations
import torch
import torch.nn as nn
from signatory import (
Augment,
LogSignature,
Signature,
logsignature_channels,
signature_channels,
)
from sig_networks.utils import obtain_signatures_mask
class SWLSTM(nn.Module):
"""
Signature Window using LSTM (SWLSTM).
"""
def __init__(
self,
input_size: int,
log_signature: bool,
sig_depth: int,
hidden_dim: list[int] | int,
pooling: str | None,
reverse_path: bool = False,
BiLSTM: bool = False,
):
"""
Applies a multi-layer Signature & LSTM block (SWLSTM) to
an input sequence.
Parameters
----------
input_size : int
The number of expected features in the input x.
log_signature : bool
Whether or not to use the log signature or standard signature.
sig_depth : int
The depth to truncate the path signature at.
hidden_dim : list[int] | int
Dimensions of the hidden layers in the LSTM blocks in the SWLSTM.
pooling: str | None
Pooling operation to apply. If None, no pooling is applied.
Options are:
- "signature": apply signature on the LSTM units at the end
to obtain the final history representation
- "lstm": take the final (non-padded) LSTM unit as the final
history representation
- None: no pooling is applied (return the final LSTM units)
reverse_path : bool, optional
Whether or not to reverse the path before passing it through the
signature layers, by default False.
BiLSTM : bool, optional
Whether or not a birectional LSTM is used for the final SWLSTM block,
by default False (unidirectional LSTM is used in this case).
"""
super().__init__()
# logging inputs to the class
self.input_size = input_size
self.log_signature = log_signature
if isinstance(hidden_dim, int):
hidden_dim = [hidden_dim]
self.sig_depth = sig_depth
self.hidden_dim = hidden_dim
self.pooling = pooling
if self.pooling not in ["signature", "lstm", None]:
raise ValueError(
"`pooling` must be 'signature', 'lstm' or None. "
f"Got {self.pooling} instead."
)
self.reverse_path = reverse_path
self.BiLSTM = BiLSTM
# creating expanding window signature layers and corresponding LSTM layers
self.signature_layers = []
self.lstm_layers = []
for layer in range(len(self.hidden_dim)):
# create expanding window signature layer and
# compute the input dimension to LSTM
if self.log_signature:
self.signature_layers.append(
LogSignature(depth=self.sig_depth, stream=True)
)
if layer == 0:
input_dim_lstm = logsignature_channels(
in_channels=input_size, depth=self.sig_depth
)
else:
input_dim_lstm = logsignature_channels(
in_channels=self.hidden_dim[layer - 1], depth=self.sig_depth
)
else:
self.signature_layers.append(
Signature(depth=self.sig_depth, stream=True)
)
if layer == 0:
input_dim_lstm = signature_channels(
channels=input_size, depth=self.sig_depth
)
else:
input_dim_lstm = signature_channels(
channels=self.hidden_dim[layer - 1], depth=self.sig_depth
)
# create LSTM layer (if last layer, this can be a BiLSTM)
self.lstm_layers.append(
nn.LSTM(
input_size=input_dim_lstm,
hidden_size=self.hidden_dim[layer],
num_layers=1,
batch_first=True,
bidirectional=False
if layer != (len(self.hidden_dim) - 1)
else self.BiLSTM,
)
)
# make a ModuleList from the signatures and LSTM layers
self.signature_layers = nn.ModuleList(self.signature_layers)
self.lstm_layers = nn.ModuleList(self.lstm_layers)
if self.pooling == "signature":
# final signature without lift (i.e. no expanding windows)
if self.log_signature:
self.final_signature = LogSignature(depth=self.sig_depth, stream=False)
self.output_dim = logsignature_channels(
in_channels=self.hidden_dim[-1], depth=self.sig_depth
)
else:
self.final_signature = Signature(depth=self.sig_depth, stream=False)
self.output_dim = signature_channels(
channels=self.hidden_dim[-1], depth=self.sig_depth
)
else:
self.final_signature = None
self.output_dim = self.hidden_dim[-1]
def forward(self, x: torch.Tensor):
# x has dimensions [batch, length of signal, channels]
# take signature lifts and lstm
for layer in range(len(self.hidden_dim)):
if self.reverse_path:
# reverse the posts in dim 1 (i.e. the time dimension)
# as the first post is the most recent
# (or padding if the path is shorter than the window size)
x = torch.flip(x, dims=[1])
# apply signature with lift layer
x = self.signature_layers[layer](x)
if self.reverse_path:
# reverse the posts back to the original order
x = torch.flip(x, dims=[1])
# compute the length of the stream incase we need to handle empty units
stream_dim = x.shape[1]
# padding for LSTM (i.e. find the padding mask on the
# streamed signatures to get length of the stream)
# obtain padding mask on the streamed signatures
mask = obtain_signatures_mask(x)
# obtain the length of the stream for each item in the batch dimension
seq_lengths = torch.sum(~mask, 1)
seq_lengths_sorted, perm_idx = seq_lengths.sort(0, descending=True)
x = x[perm_idx]
x = torch.nn.utils.rnn.pack_padded_sequence(
x, seq_lengths_sorted.cpu(), batch_first=True
)
# apply LSTM layer
x, (h_n, _) = self.lstm_layers[layer](x)
# reverse sequence padding
inverse_perm = torch.argsort(perm_idx)
if layer == len(self.hidden_dim) - 1 and self.pooling == "lstm":
# don't need to deal with outputs of LSTM if we are
# pooling by taking the last hidden state
continue
# reverse soring of sequences
x, _ = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
x = x[inverse_perm]
# if last layer and using BiLSTM, need to add element-wise
if (self.BiLSTM) & (layer == (len(self.hidden_dim) - 1)):
# using BiLSTM on the last layer - need to add element-wise
# the forward and backward LSTM states
x = (
x[:, :, : self.hidden_dim[layer]]
+ x[:, :, self.hidden_dim[layer] :]
)
# handle error in cases of empty units
if x.shape[1] == 1:
x = x.repeat(1, stream_dim, 1)
if self.pooling == "signature":
# take final signature
out = self.final_signature(x)
elif self.pooling == "lstm":
# add element-wise the forward and backward LSTM states
out = h_n[-1, :, :] + h_n[-2, :, :] if self.BiLSTM else h_n[-1, :, :]
# reverse sequence padding
out = out[inverse_perm]
else:
# no pooling, so return the final LSTM units
out = x
return out
class SWNU(nn.Module):
"""
Signature Window Network Unit (SWNU) class (using LSTM blocks).
"""
def __init__(
self,
input_channels: int,
log_signature: bool,
sig_depth: int,
hidden_dim: list[int] | int,
pooling: str | None,
output_channels: int | None = None,
reverse_path: bool = False,
BiLSTM: bool = False,
augmentation_type: str = "Conv1d",
hidden_dim_aug: list[int] | int | None = None,
):
"""
Signature Window Network Unit (SWNU) class (using LSTM blocks).
Parameters
----------
input_channels : int
Dimension of the embeddings in the path that will be passed in.
log_signature : bool
Whether or not to use the log signature or standard signature.
sig_depth : int
The depth to truncate the path signature at.
hidden_dim : list[int] | int
Dimensions of the hidden layers in the SNWU blocks.
pooling: str | None
Pooling operation to apply. If None, no pooling is applied.
Options are:
- "signature": apply signature on the LSTM units at the end
to obtain the final history representation
- "lstm": take the final (non-padded) LSTM unit as the final
history representation
- None: no pooling is applied
output_channels : int | None, optional
Requested dimension of the embeddings after convolution layer.
If None, will be set to the last item in `hidden_dim`, by default None.
reverse_path : bool, optional
Whether or not to reverse the path before passing it through the
signature layers, by default False.
BiLSTM : bool, optional
Whether or not a birectional LSTM is used,
by default False (unidirectional LSTM is used in this case).
augmentation_type : str, optional
Method of augmenting the path, by default "Conv1d".
Options are:
- "Conv1d": passes path through 1D convolution layer.
- "signatory": passes path through `Augment` layer from `signatory` package.
hidden_dim_aug : list[int] | int | None
Dimensions of the hidden layers in the augmentation layer.
Passed into `Augment` class from `signatory` package if
`augmentation_type='signatory'`, by default None.
"""
super().__init__()
self.input_channels = input_channels
self.log_signature = log_signature
self.sig_depth = sig_depth
if isinstance(hidden_dim, int):
hidden_dim = [hidden_dim]
self.hidden_dim = hidden_dim
self.pooling = pooling
self.output_channels = (
output_channels if output_channels is not None else hidden_dim[-1]
)
if augmentation_type not in ["Conv1d", "signatory"]:
raise ValueError("`augmentation_type` must be 'Conv1d' or 'signatory'.")
self.augmentation_type = augmentation_type
if isinstance(hidden_dim_aug, int):
hidden_dim_aug = [hidden_dim_aug]
elif hidden_dim_aug is None:
hidden_dim_aug = []
self.hidden_dim_aug = hidden_dim_aug
self.reverse_path = reverse_path
self.BiLSTM = BiLSTM
# convolution
self.conv = nn.Conv1d(
in_channels=self.input_channels,
out_channels=self.output_channels,
kernel_size=3,
stride=1,
padding=1,
)
# alternative to convolution: using Augment from signatory
self.augment = Augment(
in_channels=self.input_channels,
layer_sizes=[*self.hidden_dim_aug, self.output_channels],
include_original=False,
include_time=False,
kernel_size=3,
stride=1,
padding=1,
)
# non-linearity
self.tanh = nn.Tanh()
# signature window & LSTM blocks
self.swlstm = SWLSTM(
input_size=self.output_channels,
log_signature=self.log_signature,
sig_depth=self.sig_depth,
hidden_dim=self.hidden_dim,
pooling=self.pooling,
reverse_path=self.reverse_path,
BiLSTM=self.BiLSTM,
)
def forward(self, x: torch.Tensor):
# x has dimensions [batch, length of signal, channels]
# convolution
if self.augmentation_type == "Conv1d":
# input has dimensions [batch, length of signal, channels]
# swap dimensions to get [batch, channels, length of signal]
# (nn.Conv1d expects this)
out = torch.transpose(x, 1, 2)
# get only the path information
out = self.conv(out[:, : self.input_channels, :])
out = self.tanh(out)
# make output have dimensions [batch, length of signal, channels]
out = torch.transpose(out, 1, 2)
elif self.augmentation_type == "signatory":
# input has dimensions [batch, length of signal, channels]
# (signatory.Augment expects this)
# and get only the path information
# output has dimensions [batch, length of signal, channels]
out = self.augment(x[:, :, : self.input_channels])
out = self.swlstm(out)
return out