-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrunhaag.py
157 lines (131 loc) · 5.55 KB
/
runhaag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import matplotlib.pyplot as plt
import os
import pandas as pd
from rivus.utils import pandashp as pdshp
from rivus.main import rivus
try:
import pyomo.environ
from pyomo.opt.base import SolverFactory
PYOMO3 = False
except ImportError:
import coopr.environ
from coopr.opt.base import SolverFactory
PYOMO3 = True
base_directory = os.path.join('data', 'haag')
building_shapefile = os.path.join(base_directory, 'building')
edge_shapefile = os.path.join(base_directory, 'edge')
vertex_shapefile = os.path.join(base_directory, 'vertex')
data_spreadsheet = os.path.join(base_directory, 'data.xlsx')
# scenarios
def scenario_base(data, vertex, edge):
"""Base scenario: change nothing-"""
return data, vertex, edge
def scenario_renovation(data, vertex, edge):
"""Renovation: reduce heat demand of residential/other by 50%"""
area_demand = data['area_demand']
area_demand.ix[('residential', 'Heat'), 'peak'] *= 0.5
area_demand.ix[('other', 'Heat'), 'peak'] *= 0.5
return data, vertex, edge
scenarios = [
scenario_base,
scenario_renovation]
# solver
def setup_solver(optim):
"""Change solver options to custom values."""
if optim.name == 'gurobi':
# reference with list of option names
# http://www.gurobi.com/documentation/5.6/reference-manual/parameters
optim.set_options("TimeLimit=500") # seconds
optim.set_options("MIPFocus=2") # 1=feasible, 2=optimal, 3=bound
optim.set_options("MIPGap=3e-4") # default = 1e-4
optim.set_options("Threads=3") # number of simultaneous CPU threads
elif optim.name == 'glpk':
# reference with list of options
# execute 'glpsol --help'
pass
else:
print("Warning from setup_solver: no options set for solver "
"'{}'!".format(optim.name))
return optim
# helper functions
def prepare_edge(edge_shapefile, building_shapefile):
"""Create edge graph with grouped building demands.
"""
# load buildings and sum by type and nearest edge ID
# 1. read shapefile to DataFrame (with special geometry column)
# 2. group DataFrame by columns 'nearest' (ID of nearest edge) and 'type'
# (residential, commercial, industrial, other)
# 3. sum by group and unstack, i.e. convert secondary index 'type' to columns
buildings = pdshp.read_shp(building_shapefile)
building_type_mapping = {
'church': 'other',
'farm': 'other',
'hospital': 'residential',
'hotel': 'commercial',
'house': 'residential',
'office': 'commercial',
'retail': 'commercial',
'school': 'commercial',
'yes': 'other'}
buildings.replace(to_replace={'type': building_type_mapping}, inplace=True)
buildings_grouped = buildings.groupby(['nearest', 'type'])
total_area = buildings_grouped.sum()['AREA'].unstack()
# load edges (streets) and join with summed areas
# 1. read shapefile to DataFrame (with geometry column)
# 2. join DataFrame total_area on index (=ID)
# 3. fill missing values with 0
edge = pdshp.read_shp(edge_shapefile)
edge = edge.set_index('Edge')
edge = edge.join(total_area)
edge = edge.fillna(0)
return edge
def run_scenario(scenario):
# scenario name
sce = scenario.__name__
sce_nice_name = sce.replace('_', ' ').title()
# prepare input data
data = rivus.read_excel(data_spreadsheet)
vertex = pdshp.read_shp(vertex_shapefile)
edge = prepare_edge(edge_shapefile, building_shapefile)
# apply scenario function to input data
data, vertex, edge = scenario(data, vertex, edge)
# create & solve model
prob = rivus.create_model(data, vertex, edge)
if PYOMO3:
prob = prob.create() # no longer needed in Pyomo 4+
optim = SolverFactory('gurobi')
optim = setup_solver(optim)
result = optim.solve(prob, tee=True)
if PYOMO3:
prob.load(result) # no longer needed in Pyomo 4+
# create result directory if not existent
result_dir = os.path.join('result', os.path.basename(base_directory))
if not os.path.exists(result_dir):
os.makedirs(result_dir)
# report
rivus.report(prob, os.path.join(result_dir, 'report.xlsx'))
# plots
for com, plot_type in [('Elec', 'caps'), ('Heat', 'caps'), ('Gas', 'caps'),
('Elec', 'peak'), ('Heat', 'peak')]:
# two plot variants
for plot_annotations in [False, True]:
# create plot
fig = rivus.plot(prob, com, mapscale=False, tick_labels=False,
plot_demand=(plot_type == 'peak'),
annotations=plot_annotations)
plt.title('')
# save to file
for ext, transp in [('png', True), ('png', False), ('pdf', True)]:
transp_str = ('-transp' if transp and ext != 'pdf' else '')
annote_str = ('-annote' if plot_annotations else '')
# determine figure filename from scenario name, plot type,
# commodity, transparency, annotations and extension
fig_filename = '{}-{}-{}{}{}.{}'.format(
sce, plot_type, com, transp_str, annote_str, ext)
fig_filename = os.path.join(result_dir, fig_filename)
fig.savefig(fig_filename, dpi=300, bbox_inches='tight',
transparent=transp)
return prob
if __name__ == '__main__':
for scenario in scenarios:
prob = run_scenario(scenario)