-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathurbshg15.py
278 lines (234 loc) · 10.1 KB
/
urbshg15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
try:
import pyomo.environ
from pyomo.opt.base import SolverFactory
PYOMO3 = False
except ImportError:
import coopr.environ
from coopr.opt.base import SolverFactory
PYOMO3 = True
import geopandas
import os
import pandas as pd
from datetime import datetime
from rivus.utils import pandashp as pdshp
from rivus.main import rivus
base_directory = os.path.join('data', 'haag15')
building_shapefile = os.path.join(base_directory, 'building')
edge_shapefile = os.path.join(base_directory, 'edge')
to_edge_shapefile = os.path.join(base_directory, 'to_edge')
vertex_shapefile = os.path.join(base_directory, 'vertex')
data_spreadsheet = os.path.join(base_directory, 'data.xlsx')
peak_demand_prefactor = rivus.load('urbs-peak-demand-reduction.pgz')
def scale_peak_demand(model, multiplier):
""" scale rivus peak demand DataFrame by multiplier
Args:
model: a rivus model instance
multiplier: a DataFrame indexed by Cluster
(rows) and commodity (columns)
Returns:
"""
reduced_peak = []
for name, group in (model.peak.join(model.params['edge']['Cluster'])
.groupby('Cluster')):
reduced_peak.append(group.drop('Cluster', axis=1) *
multiplier.loc[name])
return pd.concat(reduced_peak)
# scenarios
def scenario_base(data, vertex, edge):
"""Base scenario: change nothing-"""
return data, vertex, edge
def scenario_no_heat_pump(data, vertex, edge):
"""No heat pump: not allowed"""
process = data['process']
process.loc['Heat pump domestic', 'cap-min'] = 0
process.loc['Heat pump domestic', 'cap-max'] = 0
process.loc['Heat pump plant', 'cap-min'] = 0
process.loc['Heat pump plant', 'cap-max'] = 0
return data, vertex, edge
def scenario_no_electric_heating(data, vertex, edge):
"""No electric heating at all"""
process = data['process']
process.loc['Heat pump domestic', 'cap-min'] = 0
process.loc['Heat pump domestic', 'cap-max'] = 0
process.loc['Heat pump plant', 'cap-min'] = 0
process.loc['Heat pump plant', 'cap-max'] = 0
process.loc['Elec heating domestic', 'cap-max'] = 0
return data, vertex, edge
def scenario_high_demand(data, vertex, edge):
"""High demand: increase demand by 100%"""
data['area_demand'] *= 2
return data, vertex, edge
def scenario_renovation(data, vertex, edge):
"""Renovation: reduce heat demand of residential/commercial by 50%"""
area_demand = data['area_demand']
area_demand.ix[('residential', 'Heat'), 'peak'] *= 0.5
area_demand.ix[('house', 'Heat'), 'peak'] *= 0.5
area_demand.ix[('commercial', 'Heat'), 'peak'] *= 0.5
area_demand.ix[('office', 'Heat'), 'peak'] *= 0.5
area_demand.ix[('other', 'Heat'), 'peak'] *= 0.5
return data, vertex, edge
def scenario_dh_cheap(data, vertex, edge):
"""DH cheap: reduce cost of DH pipe by 50%"""
commodity = data['commodity']
commodity.loc['Heat', 'cost-inv-fix'] *= 0.5
commodity.loc['Heat', 'cost-inv-var'] *= 0.5
return data, vertex, edge
def scenario_gas_expensive(data, vertex, edge):
"""Gas expensive: increase gas price by 50%"""
commodity = data['commodity']
commodity.loc['Gas', 'cost-var'] *= 1.5
return data, vertex, edge
def scenario_gas_cheap(data, vertex, edge):
"""Gas cheap: decrease gas price by 50%"""
commodity = data['commodity']
commodity.loc['Gas', 'cost-var'] *= 0.5
return data, vertex, edge
def scenario_elec_expensive(data, vertex, edge):
"""Elec expensive: increase electricity price by 100%"""
commodity = data['commodity']
commodity.loc['Elec', 'cost-var'] *= 2
return data, vertex, edge
def scenario_dh_plant_cheap(data, vertex, edge):
"""DH plant cheap: decrease cost of DH plant by 50%"""
process = data['process']
process.loc['District heating plant', 'cost-inv-fix'] *= 0.5
process.loc['District heating plant', 'cost-inv-var'] *= 0.5
return data, vertex, edge
def scenario_heat_pump_better(data, vertex, edge):
"""Heat pump better: increase output ratio by 50%"""
pro_co = data['process_commodity']
pro_co.loc[('Heat pump domestic', 'Heat', 'Out'), 'ratio'] *= 1.5
pro_co.loc[('Heat pump plant', 'Heat', 'Out'), 'ratio'] *= 1.5
return data, vertex, edge
def scenario_heat_pump_expensive(data, vertex, edge):
"""Heat pump expensive: increase investment costs by 100%"""
pro = data['process']
pro.loc['Heat pump domestic', 'cost-inv-fix'] *= 2
pro.loc['Heat pump domestic', 'cost-inv-var'] *= 2
pro.loc['Heat pump plant', 'cost-inv-fix'] *= 2
pro.loc['Heat pump plant', 'cost-inv-var'] *= 2
return data, vertex, edge
def scenario_elec_very_expensive(data, vertex, edge):
"""Elec very expensive: increase electricity price by 400%"""
commodity = data['commodity']
commodity.loc['Elec', 'cost-var'] *= 5
return data, vertex, edge
# solver
def setup_solver(optim, logfile='solver.log'):
"""Change solver options to custom values."""
if optim.name == 'gurobi':
# reference with list of option names
# http://www.gurobi.com/documentation/5.6/reference-manual/parameters
optim.set_options("logfile={}".format(logfile))
optim.set_options("TimeLimit=12000") # seconds
optim.set_options("MIPFocus=2") # 1=feasible, 2=optimal, 3=bound
optim.set_options("MIPGap=1e-3") # default = 1e-4
optim.set_options("Threads=48") # number of simultaneous CPU threads
elif optim.name == 'glpk':
# reference with list of options
# execute 'glpsol --help'
optim.set_options("log={}".format(logfile))
else:
print("Warning from setup_solver: no options set for solver "
"'{}'!".format(optim.name))
return optim
# helper functions
def prepare_result_directory(result_name):
""" create a time stamped directory within the result folder """
# timestamp for result directory
now = datetime.now().strftime('%y%m%dT%H%M')
# create result directory if not existent
result_dir = os.path.join('result', '{}-{}'.format(result_name, now))
if not os.path.exists(result_dir):
os.makedirs(result_dir)
return result_dir
def prepare_edge(edge_shapefile, building_shapefile):
"""Create edge graph with grouped building demands.
"""
# load buildings and sum by type and nearest edge ID
# 1. read shapefile to DataFrame (with special geometry column)
# 2. group DataFrame by columns 'nearest' (ID of nearest edge) and 'type'
# (residential, commercial, industrial, other)
# 3. sum by group and unstack, i.e. convert secondary index 'type' to columns
buildings = geopandas.read_file(building_shapefile+'.shp')
buildings = buildings.convert_objects(convert_numeric=True)
building_type_mapping = {
'basin': 'other', 'chapel': 'other', 'church': 'other',
'farm_auxiliary': 'other', 'greenhouse': 'other',
'school': 'public',
'office': 'commercial', 'restaurant': 'commercial',
'yes': 'residential', 'house': 'residential'}
buildings.replace(to_replace={'type': building_type_mapping}, inplace=True)
buildings = buildings.to_crs(epsg=32632)
buildings['AREA'] = buildings.area
buildings_grouped = buildings.groupby(['nearest', 'type'])
total_area = buildings_grouped.sum()['AREA'].unstack()
# load edges (streets) and join with summed areas
# 1. read shapefile to DataFrame (with geometry column)
# 2. join DataFrame total_area on index (=ID)
# 3. fill missing values with 0
edge = pdshp.read_shp(edge_shapefile)
edge = edge.set_index('Edge')
edge = edge.join(total_area)
edge = edge.fillna(0)
return edge
def run_scenario(scenario, result_dir):
# scenario name
sce = scenario.__name__
sce_nice_name = sce.replace('_', ' ').title()
# prepare input data
data = rivus.read_excel(data_spreadsheet)
vertex = pdshp.read_shp(vertex_shapefile)
edge = prepare_edge(edge_shapefile, building_shapefile)
# apply scenario function to input data
data, vertex, edge = scenario(data, vertex, edge)
log_filename = os.path.join(result_dir, sce+'.log')
# create & solve model
prob = rivus.create_model(
data, vertex, edge,
peak_multiplier=lambda x:scale_peak_demand(x, peak_demand_prefactor))
# scale peak demand according to pickled urbs findings
#reduced_peak = scale_peak_demand(model, peak_demand_prefactor)
#model.peak = reduced_peak
if PYOMO3:
prob = prob.create()
optim = SolverFactory('glpk')
optim = setup_solver(optim, logfile=log_filename)
result = optim.solve(prob, tee=True)
if PYOMO3:
prob.load(result)
# report
rivus.save(prob, os.path.join(result_dir, sce+'.pgz'))
rivus.report(prob, os.path.join(result_dir, sce+'.xlsx'))
# plot without buildings
rivus.result_figures(prob, os.path.join(result_dir, sce))
# plot with buildings and to_edge lines
more_shapefiles = [{'name': 'to_edge',
'color': rivus.to_rgb(192, 192, 192),
'shapefile': to_edge_shapefile,
'zorder': 1,
'linewidth': 0.1}]
rivus.result_figures(prob, os.path.join(result_dir, sce+'_bld'),
buildings=(building_shapefile, False),
shapefiles=more_shapefiles)
return prob
if __name__ == '__main__':
# prepare result directory
result_name = os.path.basename(base_directory)
result_dir = prepare_result_directory(result_name) # name + time stamp
scenarios = [
scenario_base,
scenario_no_electric_heating,
scenario_renovation,
scenario_no_heat_pump,
scenario_dh_cheap,
scenario_high_demand,
scenario_gas_expensive,
scenario_gas_cheap,
scenario_elec_expensive,
scenario_dh_plant_cheap,
scenario_heat_pump_better,
scenario_heat_pump_expensive,
scenario_elec_very_expensive]
for scenario in scenarios:
prob = run_scenario(scenario, result_dir)