Skip to content

Latest commit

 

History

History
164 lines (95 loc) · 3.47 KB

README.md

File metadata and controls

164 lines (95 loc) · 3.47 KB

Yolov2 Pytorch Implementation

This repository aims to learn and understand the YOLO algorithm. I am a beginner of deep learning, and I found the best way to learn a deep learning algorithm is to implement it from scratch. So if you also feel this way, just follow this repo! The code in this projects is clear and easier to understand, and I also documented it as much as possible.

Purpose

  • train pascal voc
  • multi-GPUs support
  • test
  • pascal voc validation
  • data augmentation
  • pretrained network
  • reorg layer
  • multi-scale training
  • reproduce original paper's mAP

Main Results

training set test set mAP@416 mAP@544
this repo VOC2007+2012 VOC2007 72.7 74.6
original paper VOC2007+2012 VOC2007 76.8 78.6

Running time: ~19ms (52FPS) on GTX 1080

Prerequisites

  • python 3.5.x
  • pytorch 0.4.1
  • tensorboardX
  • opencv3
  • pillow

Preparation

First clone the code

git clone https://github.com/tztztztztz/yolov2.pytorch.git

Install dependencies

pip install -r requirements.txt

Then create some folder

mkdir output 
mkdir data

Demo

Download the pretrained weights

wget http://pjreddie.com/media/files/yolo-voc.weights

You can run the demo with cpu mode

python demo.py

Or with gpu mode

python demo.py --cuda true

Training on PASCAL VOC

Prepare the data

  1. Download the training data.

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
    
    # download 2012 data
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
  2. Extract the training data, all the data will be in one directory named VOCdevit. We use $VOCdevit to represent the data root path

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
    
    # 2012 data
    tar xvf VOCtrainval_11-May-2012.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    
  4. Create symlinks for the PASCAL VOC dataset

    cd yolov2.pytorch
    mkdir data
    cd data
    mkdir VOCdevkit2007
    cd VOCdevkit2007
    ln -s $VOCdevit/VOC2007 VOC2007
    
    # mkdir VOCdevkit2012
    # cd VOCdevkit2012
    # ln -s $VOCdevit/VOC2012 VOC2012
    

Download pretrained network

cd yolov2.pytorch
cd data
mkdir pretrained
cd pretrained
wget https://pjreddie.com/media/files/darknet19_448.weights

Train the model

python train.py --cuda true

If you want use multiple GPUs to accelerate the training. you can use the command below.

python train.py --cuda true --mGPUs true

NOTE: Multi-scale training uses more GPU memory. If you have only one GPU with 8G memory, it's better to set multi-scale=False in config/config.py. See link.

Testing

python test.py --cuda true