-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
122 lines (111 loc) · 4.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import cv2
import tifffile as tiff
from torch.utils.data import Dataset, DataLoader, sampler
import albumentations as aug
from albumentations import (HorizontalFlip, VerticalFlip, ShiftScaleRotate, Normalize, Resize, Compose,Cutout, GaussNoise, RandomRotate90, Transpose, RandomBrightnessContrast, RandomCrop)
from albumentations.pytorch import ToTensor
from albumentations.augmentations.transforms import CropNonEmptyMaskIfExists
import numpy as np
class EndoDataset(Dataset):
def __init__(self, phase, shape = 512, crop_type=0, train_size = 474, val_size = 99):
self.transforms = get_transforms(phase, crop_type=crop_type, size=shape)
self.phase = phase
self.shape = shape
self.train_size = train_size
self.val_size = val_size
def __getitem__(self, idx):
if self.phase == 'train':
mask = tiff.imread('./EndoCV/ead2020_semantic_segmentation_TRAIN/masks_ead2020/EAD2020_semantic_'+"{:05d}".format(idx)+'.tif')
img = cv2.imread('./EndoCV/ead2020_semantic_segmentation_TRAIN/images_ead2020/EAD2020_semantic_'+"{:05d}".format(idx)+'.jpg')
else:
mask = tiff.imread('./EndoCV/EAD2020-Phase-II-Segmentation-VALIDATION/semanticMasks/EAD2020_MP1'+"{:04d}".format(idx)+'_mask.tif')
img = cv2.imread('./EndoCV/EAD2020-Phase-II-Segmentation-VALIDATION/originalImages/EAD2020_MP1'+"{:04d}".format(idx)+'.jpg')
if self.phase == 'train':
if img.shape[0]<self.shape or img.shape[1]<self.shape:
(h, w) = img.shape[:2]
if h>w:
re_w = self.shape+12
r = float(re_w)/ w
dim = (re_w, int(h * r))
else:
re_h = self.shape+12
r = float(re_h)/ h
dim = (int(w * r), re_h)
img = cv2.resize(img, dim)
mask_re = np.zeros((5, dim[1], dim[0]))
for i in range(5):
mask_re[i] = cv2.resize(mask[i], dim, interpolation = cv2.INTER_NEAREST)
mask = (mask_re.transpose(1,2,0) > 0).astype(np.uint8)
else:
mask = (mask.transpose(1,2,0) > 0).astype(np.uint8)
else:
(H, W) = img.shape[:2]
mask = mask[:5, ...]
pad_h = 0 if (H%128)==0 else 128-(H%128)
pad_w = 0 if (W%128)==0 else 128-(W%128)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)))
mask = np.pad(mask, ((0, 0), (0, pad_h), (0, pad_w)))
mask = (mask.transpose(1, 2, 0) > 0).astype(np.uint8)
mask*=255
augmented = self.transforms(image=img, mask=mask)
img = augmented['image']
mask = augmented['mask']
mask = mask[0].permute(2, 0, 1)
if self.phase == 'train':
# print(np.unique(mask.numpy()))
return img, mask
else:
return img,mask,pad_h,pad_w
def __len__(self):
if self.phase == 'train':
return self.train_size
else:
return self.val_size
def get_transforms(phase, crop_type=0, size=512):
list_transforms = []
if phase == "train":
list_transforms.extend([
aug.Flip(),
aug.Cutout(num_holes=4, p=0.5),
aug.OneOf([
aug.RandomContrast(),
aug.RandomGamma(),
aug.RandomBrightness(),
], p=1),
aug.ShiftScaleRotate(rotate_limit=90),
aug.OneOf([
aug.GaussNoise(p=.35),
], p=.5),
])
if crop_type==0:
list_transforms.extend([
CropNonEmptyMaskIfExists(size, size),
])
elif crop_type==1:
list_transforms.extend([
RandomCrop(size, size, p=1.0),
])
list_transforms.extend(
[
Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225], p=1),
ToTensor(),
]
)
list_trfms = Compose(list_transforms)
return list_trfms
def provider(phase, shape, crop_type, batch_size=8, num_workers=4):
'''Returns dataloader for the model training'''
if phase == 'train':
image_dataset = EndoDataset(phase, shape=shape, crop_type=crop_type)
pin = True
else:
image_dataset = EndoDataset(phase, shape=shape, crop_type=crop_type)
pin = False
dataloader = DataLoader(
image_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin,
shuffle=True,
)
return dataloader