-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathplots.C
465 lines (359 loc) · 16.8 KB
/
plots.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// Standard library includes
#include <iomanip>
#include <map>
#include <memory>
#include <string>
// ROOT includes
#include "TCanvas.h"
#include "TChain.h"
#include "TFile.h"
#include "TH1D.h"
#include "THStack.h"
#include "TLegend.h"
#include "TLine.h"
#include "TParameter.h"
#include "TStyle.h"
#include "TPad.h"
// STV analysis includes
#include "EventCategory.hh"
#include "FiducialVolume.hh"
#include "FilePropertiesManager.hh"
#include "HistUtils.hh"
#include "PlotUtils.hh"
// Abbreviation to make using the enum class easier
using NFT = NtupleFileType;
void make_plots( const std::string& branchexpr, const std::string& selection,
const std::set<int>& runs, std::vector<double> bin_low_edges,
const std::string& x_axis_label = "",
const std::string& y_axis_label = "", const std::string& title = "",
const std::string& mc_event_weight = DEFAULT_MC_EVENT_WEIGHT )
{
// Get the number of bins to use in histograms
int Nbins = bin_low_edges.size() - 1;
// Make a counter that iterates each time this function is called. We'll use
// it to avoid duplicate histogram names (which can confuse ROOT).
static long plot_counter = -1;
++plot_counter;
// Get access to the singleton utility classes that we'll need
const EventCategoryInterpreter& eci = EventCategoryInterpreter::Instance();
const FilePropertiesManager& fpm = FilePropertiesManager::Instance();
// Consider samples for data taken with the beam on, data taken with the beam
// off, and CV MC samples for numus, intrinsic nues, and dirt events
constexpr std::array< NFT, 5 > file_types = { NFT::kOnBNB, NFT::kExtBNB,
NFT::kNumuMC, NFT::kIntrinsicNueMC, NFT::kDirtMC };
// Similar array that includes only the CV MC samples
constexpr std::array< NFT, 3 > mc_file_types = { NFT::kNumuMC,
NFT::kIntrinsicNueMC, NFT::kDirtMC };
// Prepare TChains needed to loop over the event ntuples to be analyzed. Also
// prepare maps to keep track of the corresponding POT normalizations and
// total number of triggers (the latter of these is actually used only for
// data samples).
std::map< NFT, std::unique_ptr<TChain> > tchain_map;
std::map< NFT, double > pot_map;
std::map< NFT, long > trigger_map;
for ( const auto& type : file_types ) {
tchain_map.emplace( std::make_pair(type, new TChain("stv_tree")) );
pot_map[ type ] = 0.;
trigger_map[ type ] = 0;
}
// Add files for each of the selected runs to the appropriate TChain. Also
// update the corresponding POT normalizations. Use the FilePropertiesManager
// to find the right ntuple files for each run.
const auto& ntuple_map = fpm.ntuple_file_map();
const auto& data_norm_map = fpm.data_norm_map();
for ( const int& run : runs ) {
// Get the map storing the ntuple file names for the current run
const auto& run_map = ntuple_map.at( run );
for ( const auto& type : file_types ) {
// Get the set of ntuple files for the current run and sample type
const auto& ntuple_files = run_map.at( type );
// Get access to the corresponding TChain, total POT value, and total
// number of triggers that we want to use to handle these files
auto* tchain = tchain_map.at( type ).get();
double& total_pot = pot_map.at( type );
long& total_triggers = trigger_map.at( type );
for ( const auto& file_name : ntuple_files ) {
// Add the current file to the appropriate TChain
tchain->Add( file_name.c_str() );
// For data samples, get normalization information from the
// FilePropertiesManager and add it to the total (it's not stored in
// the files themselves)
if ( type == NFT::kOnBNB || type == NFT::kExtBNB ) {
const auto& norm_info = data_norm_map.at( file_name );
total_triggers += norm_info.trigger_count_;
// This will just be zero for beam-off data. We will calculate an
// effective value using the trigger counts below.
total_pot += norm_info.pot_;
}
// For MC samples, extract the POT normalization from the TParameter
// stored in the file
else if ( type == NFT::kNumuMC || type == NFT::kIntrinsicNueMC
|| type == NFT::kDirtMC )
{
TFile temp_file( file_name.c_str(), "read" );
TParameter<float>* temp_pot = nullptr;
temp_file.GetObject( "summed_pot", temp_pot );
double pot = temp_pot->GetVal();
total_pot += pot;
}
} // file names
} // ntuple types
} // runs
// Prepare strings used by multiple histograms below
std::string hist_name_prefix = "hist_plot" + std::to_string( plot_counter );
std::string plot_title = title + "; " + x_axis_label + "; " + y_axis_label;
// Fill the beam-off data histogram using the matching TChain
std::string off_data_hist_name = hist_name_prefix + "_ext";
TH1D* off_data_hist = new TH1D( off_data_hist_name.c_str(),
plot_title.c_str(), Nbins, bin_low_edges.data() );
TChain* off_chain = tchain_map.at( NFT::kExtBNB ).get();
off_chain->Draw( (branchexpr + " >> " + off_data_hist_name).c_str(),
selection.c_str(), "goff" );
//off_data_hist->SetDirectory( nullptr );
// We need to scale the beam-off data to an effective POT based on the ratio
// of the total trigger counts for beam-off and beam-on data. Do that here.
double pot_on = pot_map.at( NFT::kOnBNB );
double trigs_on = trigger_map.at( NFT::kOnBNB );
double trigs_off = trigger_map.at( NFT::kExtBNB );
// Compute the effective POT and store it in the map
double ext_effective_pot = trigs_off * pot_on / trigs_on;
pot_map[ NFT::kExtBNB ] = ext_effective_pot;
// Scale the beam-off data based on the effective POT
off_data_hist->Scale( pot_on / ext_effective_pot );
eci.set_ext_histogram_style( off_data_hist );
// Fill the beam-on data histogram using the matching TChain
std::string on_data_hist_name = hist_name_prefix + "_on";
TH1D* on_data_hist = new TH1D( on_data_hist_name.c_str(),
plot_title.c_str(), Nbins, bin_low_edges.data() );
TChain* on_chain = tchain_map.at( NFT::kOnBNB ).get();
on_chain->Draw( (branchexpr + " >> " + on_data_hist_name).c_str(),
selection.c_str(), "goff" );
//on_data_hist->SetDirectory( nullptr );
on_data_hist->Scale( 1. );
eci.set_bnb_data_histogram_style( on_data_hist );
// Initialize empty stacked histograms organized by MC event category
std::map< EventCategory, TH1D* > mc_hists;
// Loop over all MC event categories
for ( const auto& pair : eci.label_map() ) {
EventCategory cat = pair.first;
std::string cat_label = pair.second;
std::string temp_mc_hist_name = hist_name_prefix + "_mc"
+ std::to_string( cat );
TH1D* temp_mc_hist = new TH1D( temp_mc_hist_name.c_str(),
plot_title.c_str(), Nbins, bin_low_edges.data() );
mc_hists[ cat ] = temp_mc_hist;
//temp_mc_hist->SetDirectory( nullptr );
eci.set_mc_histogram_style( cat, temp_mc_hist );
}
// Loop over the different MC samples and collect their contributions. We
// have to handle them separately in order to get the POT normalization
// correct.
// Counter that avoids duplicate temporary MC histogram names. This is used
// to avoid annoying ROOT warnings.
static int dummy_counter = 0;
for ( const auto& type : mc_file_types ) {
TChain* mc_ch = tchain_map.at( type ).get();
double on_pot = pot_map.at( NFT::kOnBNB );
double mc_pot = pot_map.at( type );
// Add this sample's contribution to the stacked histograms by MC event
// category
for ( const auto& pair : eci.label_map() ) {
EventCategory ec = pair.first;
std::string temp_mc_hist_name = hist_name_prefix + "_temp_mc"
+ std::to_string( ec ) + "_number" + std::to_string( dummy_counter );
++dummy_counter;
TH1D* temp_mc_hist = new TH1D( temp_mc_hist_name.c_str(),
plot_title.c_str(), Nbins, bin_low_edges.data() );
mc_ch->Draw( (branchexpr + " >> " + temp_mc_hist_name).c_str(),
(mc_event_weight + "*(" + selection + " && category == "
+ std::to_string(ec) + ')').c_str(), "goff" );
// Scale to the same exposure as the beam-on data
temp_mc_hist->Scale( on_pot / mc_pot );
// Add this histogram's contribution (now properly scaled) to the total
mc_hists.at( ec )->Add( temp_mc_hist );
// We don't need the temporary histogram anymore, so just get rid of it
delete temp_mc_hist;
} // event categories
} // MC samples
// All the input histograms are now ready. Prepare the plot.
auto* c1 = new TCanvas;
//c1->SetLeftMargin( 0.12 );
//c1->SetBottomMargin( 1.49 );
TPad* pad1 = new TPad( "pad1", "", 0.0, 0.23, 1.0, 1.0 );
pad1->SetBottomMargin( 0 );
pad1->SetRightMargin( 0.06 );
pad1->SetLeftMargin( 0.13 );
pad1->SetGridx();
pad1->Draw();
pad1->cd();
on_data_hist->Draw( "E1" );
// Stack of categorized MC predictions plus extBNB contribution
THStack* stacked_hist = new THStack( "mc", "" );
// Sum all contributions into this TH1D so that we can get the overall
// statistical uncertainty easily
TH1D* stat_err_hist = new TH1D(
("stat_err_hist_" + hist_name_prefix).c_str(), "",
Nbins, bin_low_edges.data()
);
stacked_hist->Add( off_data_hist );
stat_err_hist->Add( off_data_hist );
for ( auto citer = mc_hists.crbegin(); citer != mc_hists.crend();
++citer )
{
TH1D* hist = citer->second;
stacked_hist->Add( hist );
stat_err_hist->Add( hist );
}
stacked_hist->Draw( "hist same" );
on_data_hist->Draw( "E1 same" );
eci.set_stat_err_histogram_style( stat_err_hist );
stat_err_hist->Draw( "E2 same" );
// Adjust y-axis range for stacked plot. Check both the data and the
// stacked histograms (via the combined stat_err_hist)
double ymax = stat_err_hist->GetBinContent( stat_err_hist->GetMaximumBin() );
double ymax2 = on_data_hist->GetBinContent( on_data_hist->GetMaximumBin() );
if ( ymax < ymax2 ) ymax = ymax2;
// Redraw the histograms with the updated y-axis range
on_data_hist->GetYaxis()->SetRangeUser( 0., 1.05*ymax );
on_data_hist->Draw( "E1 same" );
// Prepare the plot legend
TLegend* lg = new TLegend( 0.64, 0.32, 0.94, 0.85 );
std::string legend_title = get_legend_title( pot_on );
lg->SetHeader( legend_title.c_str(), "C" );
lg->AddEntry( on_data_hist, "Data (beam on)", "lp" );
lg->AddEntry( stat_err_hist, "Statistical uncertainty", "f" );
double total_events = stat_err_hist->Integral();
for ( const auto& pair : eci.label_map() ) {
EventCategory ec = pair.first;
std::string label = pair.second;
TH1* category_hist = mc_hists.at( ec );
// Use TH1::Integral() to account for CV reweighting correctly
double events_in_category = category_hist->Integral();
double category_percentage = events_in_category * 100. / total_events;
std::string cat_pct_label = Form( "%.2f%#%", category_percentage );
lg->AddEntry( category_hist, (label + ", " + cat_pct_label).c_str(), "f" );
}
double beam_off_events = off_data_hist->Integral();
double beam_off_percentage = beam_off_events * 100. / total_events;
std::string off_pct_label = Form( "%.2f%#%", beam_off_percentage );
lg->AddEntry( off_data_hist, ("Data (beam off), "
+ off_pct_label).c_str(), "f" );
lg->SetBorderSize( 0 );
// Increase the font size for the legend header
// (see https://root-forum.cern.ch/t/tlegend-headers-font-size/14434)
TLegendEntry* lg_header = dynamic_cast< TLegendEntry* >(
lg->GetListOfPrimitives()->First() );
lg_header->SetTextSize( 0.03 );
lg->Draw( "same" );
// Ratio plot
c1->cd(); // Go back from pad1 to main canvas c1
TPad* pad2 = new TPad( "pad2", "", 0, 0.01, 1.0, 0.23 );
pad2->SetTopMargin( 0 );
pad2->SetFrameFillStyle( 4000 );
pad2->SetBottomMargin( 0.38 );
pad2->SetRightMargin( 0.06 );
pad2->SetLeftMargin( 0.13 );
pad2->SetGridx();
pad2->Draw();
pad2->cd(); // change current pad to pad2
// Ratio plot
TH1D* h_ratio = dynamic_cast<TH1D*>( on_data_hist->Clone("h_ratio") );
h_ratio->SetStats( false );
h_ratio->Divide( stat_err_hist );
h_ratio->SetLineWidth( 2 );
h_ratio->SetLineColor( kBlack );
h_ratio->SetMarkerStyle( kFullCircle );
h_ratio->SetMarkerSize( 0.8 );
h_ratio->SetTitle( "" );
// x-axis
h_ratio->GetXaxis()->SetTitle( on_data_hist->GetXaxis()->GetTitle() );
h_ratio->GetXaxis()->CenterTitle( true );
h_ratio->GetXaxis()->SetLabelSize( 0.12 );
h_ratio->GetXaxis()->SetTitleSize( 0.18 );
h_ratio->GetXaxis()->SetTickLength( 0.05 );
h_ratio->GetXaxis()->SetTitleOffset( 0.9 );
// y-axis
h_ratio->GetYaxis()->SetTitle( "ratio" ); //"#frac{Beam ON}{Beam OFF + MC}" );
h_ratio->GetYaxis()->CenterTitle( true );
h_ratio->GetYaxis()->SetLabelSize( 0.08);
h_ratio->GetYaxis()->SetTitleSize( 0.15 );
h_ratio->GetYaxis()->SetTitleOffset( 0.35 );
h_ratio->Draw( "E1" );
gStyle->SetGridColor( 17 );
// Adjust y-axis
double ratio_max = h_ratio->GetBinContent( h_ratio->GetMaximumBin() );
double ratio_min = h_ratio->GetBinContent( h_ratio->GetMinimumBin() );
h_ratio->SetMaximum( ratio_max + ratio_max*0.15 );
h_ratio->SetMinimum( ratio_min - ratio_min*0.2 );
gPad->Update();
// Draw a horizontal dashed line at ratio == 1
TLine* line = new TLine( h_ratio->GetXaxis()->GetXmin(), 1.0,
h_ratio->GetXaxis()->GetXmax(), 1.0 );
line->SetLineColor( kBlack );
line->SetLineStyle( 9 ); // dashed
line->Draw();
c1->Update();
}
// Overloaded version with constant-width binning
void make_plots( const std::string& branchexpr, const std::string& selection,
const std::set<int>& runs, double xmin, double xmax, int Nbins,
const std::string& x_axis_label = "", const std::string& y_axis_label = "",
const std::string& title = "",
const std::string& mc_event_weight = DEFAULT_MC_EVENT_WEIGHT )
{
// Generates a vector of bin low edges equivalent to the approach used by the
// TH1 constructor that takes xmin and xmax in addition to the number of bins
auto bin_low_edges = get_bin_low_edges( xmin, xmax, Nbins );
make_plots( branchexpr, selection, runs, bin_low_edges, x_axis_label,
y_axis_label, title, mc_event_weight );
}
void plots() {
const std::string sel_CCNp = "sel_CCNp0pi";
const std::string sel_CCincl = "sel_nu_mu_cc && sel_has_muon_candidate"
" && sel_muon_above_threshold";
//// Drafts of selections for sidebands (need further refinement)
//const std::string sel_NC = "sel_nu_mu_cc && sel_no_reco_showers && !sel_has_muon_candidate && sel_has_p_candidate && sel_passed_proton_pid_cut && sel_protons_contained && sel_lead_p_passed_mom_cuts";
//const std::string sel_OOFV = "!sel_nu_mu_cc && sel_no_reco_showers && !sel_has_muon_candidate";
//const std::string sel_CCNpi = "sel_nu_mu_cc && sel_no_reco_showers && sel_has_muon_candidate && sel_has_p_candidate && !sel_passed_proton_pid_cut && sel_protons_contained"; // && sel_lead_p_passed_mom_cuts";
make_plots( "topological_score",
"sel_reco_vertex_in_FV && sel_pfp_starts_in_PCV && sel_has_muon_candidate"
" && sel_no_reco_showers && sel_muon_above_threshold"
" && sel_has_p_candidate && sel_passed_proton_pid_cut"
" && sel_protons_contained && sel_lead_p_passed_mom_cuts",
std::set<int>{1}, 0., 1., 40, "topological score", "events", "Run 1" );
//make_plots( "reco_nu_vtx_sce_z", sel_CCNpi, std::set<int>{1}, FV_Z_MIN,
// FV_Z_MAX, 40, "reco vertex z [cm]", "events", "Run 1" );
//make_plots( "delta_pT", "sel_CCNp0pi", // && sel_topo_cut_passed",
// std::set<int>{1}, 0., 0.8, 15, "#deltap_{T} [GeV]", "events",
// "Runs 1-3" );
// NEW COMPARISONS with MCC8 CCNp
//make_plots( "p3_mu.CosTheta()", "sel_CCNp0pi", std::set<int>{1,2,3},
// { -1.0, -0.82, -0.66, -0.39, -0.16, 0.05, 0.25, 0.43, 0.59, 0.73,
// 0.83, 0.91, 1.0 }, "cos#theta_{#mu}", "events",
// "MCC9 CCNp (Run 1)" );
//make_plots( "TMath::ACos( (p3_mu.X()*p3_lead_p.X() + "
//"p3_mu.Y()*p3_lead_p.Y() + p3_mu.Z()*p3_lead_p.Z()) / p3_mu.Mag()"
//"/ p3_lead_p.Mag() )", "sel_CCNp0pi", std::set<int>{1},
// { 0.0, 0.8, 1.2, 1.57, 1.94, 2.34, M_PI }, "#theta_{#mu-p}", "events",
// "MCC9 CCNp (Run 1, spline weights only)",
// "spline_weight" );
//make_plots( "p3_lead_p.Mag()", "sel_CCNp0pi", std::set<int>{1},
// { 0.3, 0.41, 0.495, 0.56, 0.62, 0.68, 0.74, 0.8, 0.87, 0.93, 1.2 },
// "p_{p} (GeV)", "events",
// "MCC9 CCNp (Run 1, spline weights only)",
// "spline_weight" );
//make_plots( "p3_mu.Mag()", "sel_CCNp0pi", std::set<int>{1},
// { 0.1, 0.18, 0.3, 0.48, 0.75, 1.14, 2.5 },
// "p_{#mu} (GeV)", "events",
// "MCC9 CCNp (Run 1, spline weights only)",
// "spline_weight" );
//make_plots( "p3_lead_p.CosTheta()", "sel_CCNp0pi", std::set<int>{1},
// { -1.0, -0.5, 0.0, 0.27, 0.45, 0.62, 0.76, 0.86, 0.94, 1.0 },
// "cos#theta_{p}", "events",
// "MCC9 CCNp (Run 1, spline weights only)",
// "spline_weight" );
//make_plots( "p3_mu.CosTheta()", sel_CCincl, std::set<int>{1},
// { -1.00, -0.5, 0.00, 0.27, 0.45, 0.62, 0.76, 0.86, 0.94, 1.0 },
// "cos#theta_{#mu}", "events",
// "Steven G's CC inclusive (Run 1)" );
}