-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathcallbacks.py
334 lines (288 loc) · 11.8 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import sys
import time
import os
import warnings
import numpy as np
import matplotlib
matplotlib.use('Agg')
from matplotlib import pylab as plt
from torch.optim.optimizer import Optimizer
###############################################################################
# TRAINING CALLBACKS
###############################################################################
class ReduceLROnPlateau(object):
"""Reduce learning rate when a metric has stopped improving.
Models often benefit from reducing the learning rate by a factor
of 2-10 once learning stagnates. This scheduler reads a metrics
quantity and if no improvement is seen for a 'patience' number
of epochs, the learning rate is reduced.
Args:
factor: factor by which the learning rate will
be reduced. new_lr = lr * factor
patience: number of epochs with no improvement
after which learning rate will be reduced.
verbose: int. 0: quiet, 1: update messages.
mode: one of {min, max}. In `min` mode,
lr will be reduced when the quantity
monitored has stopped decreasing; in `max`
mode it will be reduced when the quantity
monitored has stopped increasing.
epsilon: threshold for measuring the new optimum,
to only focus on significant changes.
cooldown: number of epochs to wait before resuming
normal operation after lr has been reduced.
min_lr: lower bound on the learning rate.
Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> scheduler = ReduceLROnPlateau(optimizer, 'min')
>>> for epoch in range(10):
>>> train(...)
>>> val_acc, val_loss = validate(...)
>>> scheduler.step(val_loss, epoch)
"""
def __init__(self, optimizer, mode='min', factor=0.1, patience=10,
verbose=0, epsilon=1e-4, cooldown=0, min_lr=0):
super(ReduceLROnPlateau, self).__init__()
if factor >= 1.0:
raise ValueError('ReduceLROnPlateau '
'does not support a factor >= 1.0.')
self.factor = factor
self.min_lr = min_lr
self.epsilon = epsilon
self.patience = patience
self.verbose = verbose
self.cooldown = cooldown
self.cooldown_counter = 0 # Cooldown counter.
self.monitor_op = None
self.wait = 0
self.best = 0
self.mode = mode
assert isinstance(optimizer, Optimizer)
self.optimizer = optimizer
self._reset()
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['min', 'max']:
raise RuntimeError('Learning Rate Plateau Reducing mode %s is unknown!')
if self.mode == 'min' :
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def reset(self):
self._reset()
def step(self, metrics, epoch):
current = metrics
if current is None:
warnings.warn('Learning Rate Plateau Reducing requires metrics available!', RuntimeWarning)
else:
if self.in_cooldown():
self.cooldown_counter -= 1
self.wait = 0
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
elif not self.in_cooldown():
if self.wait >= self.patience:
for param_group in self.optimizer.param_groups:
old_lr = float(param_group['lr'])
if old_lr > self.min_lr + self.lr_epsilon:
new_lr = old_lr * self.factor
new_lr = max(new_lr, self.min_lr)
param_group['lr'] = new_lr
if self.verbose > 0:
print('\nEpoch %05d: reducing learning rate to %s.' % (epoch, new_lr))
self.cooldown_counter = self.cooldown
self.wait = 0
self.wait += 1
def in_cooldown(self):
return self.cooldown_counter > 0
class MonitorLRDecay(object):
"""
Decay learning rate with some patience
"""
def __init__(self, decay_factor, patience):
self.best_loss = 999999
self.decay_factor = decay_factor
self.patience = patience
self.count = 0
def __call__(self, current_loss, current_lr):
if current_loss < self.best_loss:
self.best_loss = current_loss
self.count = 0
elif self.count > self.patience:
current_lr = current_lr * self. decay_factor
print(" > New learning rate -- {0:}".format(current_lr))
self.count = 0
else:
self.count += 1
return current_lr
class PlotLearning(object):
def __init__(self, save_path, num_classes):
self.accuracy = []
self.val_accuracy = []
self.losses = []
self.val_losses = []
self.learning_rates = []
self.save_path_loss = os.path.join(save_path, 'loss_plot.png')
self.save_path_accu = os.path.join(save_path, 'accu_plot.png')
self.save_path_lr = os.path.join(save_path, 'lr_plot.png')
self.init_loss = -np.log(1.0 / num_classes)
def plot(self, logs):
self.accuracy.append(logs.get('acc'))
self.val_accuracy.append(logs.get('val_acc'))
best_val_acc = max(self.val_accuracy)
best_train_acc = max(self.accuracy)
best_val_epoch = self.val_accuracy.index(best_val_acc)
best_train_epoch = self.accuracy.index(best_train_acc)
plt.figure(1)
plt.gca().cla()
plt.ylim(0, 1)
plt.plot(self.accuracy, label='train')
plt.plot(self.val_accuracy, label='valid')
plt.title("best_val@{0:}-{1:.2f}, best_train@{2:}-{3:.2f}".format(
best_val_epoch, best_val_acc, best_train_epoch, best_train_acc))
plt.legend()
plt.savefig(self.save_path_accu)
self.losses.append(logs.get('loss'))
self.val_losses.append(logs.get('val_loss'))
best_val_loss = min(self.val_losses)
best_train_loss = min(self.losses)
best_val_epoch = self.val_losses.index(best_val_loss)
best_train_epoch = self.losses.index(best_train_loss)
plt.figure(2)
plt.gca().cla()
plt.ylim(0, self.init_loss)
plt.plot(self.losses, label='train')
plt.plot(self.val_losses, label='valid')
plt.title("best_val@{0:}-{1:.2f}, best_train@{2:}-{3:.2f}".format(
best_val_epoch, best_val_loss, best_train_epoch, best_train_loss))
plt.legend()
plt.savefig(self.save_path_loss)
self.learning_rates.append(logs.get('learning_rate'))
min_learning_rate = min(self.learning_rates)
max_learning_rate = max(self.learning_rates)
print(min_learning_rate)
plt.figure(2)
plt.gca().cla()
plt.ylim(0, max_learning_rate)
plt.plot(self.learning_rates)
plt.title("max_learning_rate-{0:.6f}, min_learning_rate-{1:.6f}".format(max_learning_rate, min_learning_rate))
plt.savefig(self.save_path_lr)
class Progbar(object):
"""Displays a progress bar.
# Arguments
target: Total number of steps expected.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=30, verbose=1, interval=0.05):
self.width = width
self.target = target
self.sum_values = {}
self.unique_values = []
self.start = time.time()
self.last_update = 0
self.interval = interval
self.total_width = 0
self.seen_so_far = 0
self.verbose = verbose
def update(self, current, values=None, force=False):
"""Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples (name, value_for_last_step).
The progress bar will display averages for these values.
force: Whether to force visual progress update.
"""
values = values or []
for k, v in values:
if k not in self.sum_values:
self.sum_values[k] = [v * (current - self.seen_so_far),
current - self.seen_so_far]
self.unique_values.append(k)
else:
self.sum_values[k][0] += v * (current - self.seen_so_far)
self.sum_values[k][1] += (current - self.seen_so_far)
self.seen_so_far = current
now = time.time()
if self.verbose == 1:
if not force and (now - self.last_update) < self.interval:
return
prev_total_width = self.total_width
sys.stdout.write('\b' * prev_total_width)
sys.stdout.write('\r')
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%%%dd [' % (numdigits, numdigits)
bar = barstr % (current, self.target)
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
sys.stdout.write(bar)
self.total_width = len(bar)
if current:
time_per_unit = (now - self.start) / current
else:
time_per_unit = 0
eta = time_per_unit * (self.target - current)
info = ''
if current < self.target:
info += ' - ETA: %ds' % eta
else:
info += ' - %ds' % (now - self.start)
for k in self.unique_values:
info += ' - %s:' % k
if isinstance(self.sum_values[k], list):
avg = self.sum_values[k][0] / max(1, self.sum_values[k][1])
if abs(avg) > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
else:
info += ' %s' % self.sum_values[k]
self.total_width += len(info)
if prev_total_width > self.total_width:
info += ((prev_total_width - self.total_width) * ' ')
sys.stdout.write(info)
sys.stdout.flush()
if current >= self.target:
sys.stdout.write('\n')
if self.verbose == 2:
if current >= self.target:
info = '%ds' % (now - self.start)
for k in self.unique_values:
info += ' - %s:' % k
avg = self.sum_values[k][0] / max(1, self.sum_values[k][1])
if avg > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
sys.stdout.write(info + "\n")
self.last_update = now
def add(self, n, values=None):
self.update(self.seen_so_far + n, values)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count