-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
40 lines (32 loc) · 1.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
import torch
import torchvision
from PIL import Image
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
def plot_images(images):
plt.figure(figsize=(32, 32))
plt.imshow(torch.cat([
torch.cat([i for i in images.cpu()], dim=-1),
], dim=-2).permute(1, 2, 0).cpu())
plt.show()
def save_images(images, path, **kwargs):
grid = torchvision.utils.make_grid(images, **kwargs)
ndarr = grid.permute(1, 2, 0).to('cpu').numpy()
im = Image.fromarray(ndarr)
im.save(path)
def get_data(args):
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(80), # args.image_size + 1/4 *args.image_size
torchvision.transforms.RandomResizedCrop(args.image_size, scale=(0.8, 1.0)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = torchvision.datasets.ImageFolder(args.dataset_path, transform=transforms)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
return dataloader
def setup_logging(run_name):
os.makedirs("models", exist_ok=True)
os.makedirs("results", exist_ok=True)
os.makedirs(os.path.join("models", run_name), exist_ok=True)
os.makedirs(os.path.join("results", run_name), exist_ok=True)