-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclassify_model_simple.py
81 lines (69 loc) · 3.04 KB
/
classify_model_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import caffe
import os
import sys
import re
import numpy as np
n_views = 80 # change this if you are not using 80 views per model"
n_classes = 40 # change this if you are not using 40 class dataset
model = "./mvcnn_caffenet_simple/deploy.prototxt" # change this to your model defiintion
weights = "./mvcnn_caffenet_simple/caffenet_train_iter_15000.caffemodel" # change this to your trained model
mean_file = "./modelnet40v2/mean.binaryproto" # change this to your mean file
label_name_file = "./modelnet40v2/label_name.txt" # change this to your label_name file
def predict(images, net, transformer):
if (len(images) != n_views):
sys.exit("Error: expecting ", n_views, " images in a batch")
votes = np.zeros(n_views)
for img in images:
net.blobs['data'].data[...] = transformer.preprocess('data', img)
net.forward()
scores = net.blobs['prob'].data[0].flatten()
prediction = np.argmax(scores)
votes[prediction] += 1
return np.argmax(votes)
if __name__ == '__main__':
if (len(sys.argv) != 2):
sys.exit("Usage: python classify_model_simple.py /path/to/image_directory/")
files = os.listdir(sys.argv[1])
if (len(files) % n_views != 0):
sys.exit("Error: num of input images should be divisible by " + str(n_views))
# Import label-name correspondence
label_name = {}
with open(label_name_file) as f:
for line in f:
(label, name) = line.split()
label_name[int(label)] = name
# Net
net = caffe.Net(model, weights, caffe.TEST)
# Convert image mean
mean_blob = caffe.proto.caffe_pb2.BlobProto()
mean_bin = open(mean_file, 'rb').read()
mean_blob.ParseFromString(mean_bin)
mean = np.array(caffe.io.blobproto_to_array(mean_blob))
# have to manually slice mean size because caffe assume mean size to be the same as input dims,
# during training both mean and image sizes could automatically get cropped to network input dims,
# however when testing only image size could be cropped automatically by deployment input layer
mean = mean[0, :, 14:-15, 14:-15]
# Transform data
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', mean)
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2, 1, 0))
# Load images and predict
count = 0;
right = 0;
for i in range(len(files) / n_views):
images = []
for j in range(i*n_views, (i+1)*n_views):
img = caffe.io.load_image(os.path.join(sys.argv[1], files[j]))
images.append(img)
# Extract label from file name
pos = re.search("\d", files[j])
name = files[j][:pos.start()-1]
pred_label = predict(images, net, transformer)
pred_name = label_name[int(pred_label)]
print("label: " + name + ", " + "prediction: " + pred_name)
count += 1
if name == pred_name:
right += 1
print("Accuracy: " + str(right / float(count)))