-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
126 lines (89 loc) · 4.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D, SeparableConv2D
from keras.layers import Activation, Flatten, Dense, Dropout, GlobalAveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers import Input, AveragePooling2D
from keras.models import Model
from keras.layers.merge import concatenate
def _get_smallest_shape(layers):
return min([layer.get_shape().as_list()[1] for layer in layers])
def _get_smallest_channels(layers):
return min([layer.get_shape().as_list()[-1] for layer in layers])
def _resize_layers(layers, smallest_shape):
res_layers = []
for layer in layers:
layer_shape = layer.get_shape().as_list()[1]
if layer_shape != smallest_shape:
ps = layer_shape // smallest_shape
res_layer = AveragePooling2D(pool_size=(ps, ps))(layer)
res_layers.append(res_layer)
else:
res_layers.append(layer)
return res_layers
def _reduce_channels(conc, smallest_channels):
return Convolution2D(smallest_channels, (1, 1), padding='same', use_bias=False, activation='relu')(conc)
def merge_layers(layers):
smallest_shape = _get_smallest_shape(layers)
smallest_channels = _get_smallest_channels(layers)
resized_layers = _resize_layers(layers, smallest_shape)
conc = concatenate(resized_layers)
reduced = _reduce_channels(conc, smallest_channels)
return reduced
def get_model(num_classes=10):
inp = Input(shape=(32,32,3), name='input')
sep1_r = SeparableConv2D(64, (5, 5), use_bias=False, name='sep1', padding='same', activation='relu')(inp)
sep1 = BatchNormalization()(sep1_r)
conv1_r = Convolution2D(64, (5, 5), use_bias=False, name='conv1', padding='same', activation='relu')(sep1)
conv1 = BatchNormalization()(conv1_r)
conv2_r = Convolution2D(64, (5, 5), use_bias=False, name='conv2', padding='same', activation='relu')(conv1)
conv2 = BatchNormalization()(conv2_r)
concat1_r = merge_layers([sep1, conv2])
concat1 = BatchNormalization()(concat1_r)
sep2_r = SeparableConv2D(64, (5, 5), use_bias=False, name='sep2', padding='same', activation='relu')(concat1)
sep2 = BatchNormalization()(sep2_r)
concat2_r = merge_layers([sep1, sep2])
concat2 = BatchNormalization()(concat2_r)
pool1 = MaxPooling2D(2, 2, name='pool1')(concat2)
sep3_r = SeparableConv2D(128, (3, 3), use_bias=False, name='sep3', padding='same', activation='relu')(pool1)
sep3 = BatchNormalization()(sep3_r)
concat4_r = merge_layers([sep2, sep3])
concat4 = BatchNormalization()(concat4_r)
conv3_r = Convolution2D(128, (5, 5), use_bias=False, name='conv3', padding='same', activation='relu')(concat4)
conv3 = BatchNormalization()(conv3_r)
concat5_r = merge_layers([conv2, sep2, sep3, conv3])
concat5 = BatchNormalization()(concat5_r)
sep4_r = SeparableConv2D(128, (3, 3), use_bias=False, name='sep4', padding='same', activation='relu')(concat5)
sep4 = BatchNormalization()(sep4_r)
concat6_r = merge_layers([conv2, conv3, sep1, sep2, sep3, sep4])
concat6 = BatchNormalization()(concat6_r)
sep5_r = SeparableConv2D(128, (5, 5), use_bias=False, name='sep5', padding='same', activation='relu')(concat6)
sep5 = BatchNormalization()(sep5_r)
concat7_r = merge_layers([sep1, sep2, sep3, sep4, sep5])
concat7 = BatchNormalization()(concat7_r)
pool2 = MaxPooling2D(2, 2, name='pool2')(concat7)
concat8_r = merge_layers([conv3, pool2])
concat8 = BatchNormalization()(concat8_r)
conv4_r = Convolution2D(256, (5, 5), use_bias=False, name='conv4', padding='same', activation='relu')(concat8)
conv4 = BatchNormalization()(conv4_r)
concat9_r = merge_layers([sep2, sep4, conv2, conv4])
concat9 = BatchNormalization()(concat9_r)
sep6_r = SeparableConv2D(256, (5, 5), use_bias=False, name='sep6', padding='same', activation='relu')(concat9)
sep6 = BatchNormalization()(sep6_r)
concat10_r = merge_layers([sep3, conv1, conv2, conv4, sep6])
concat10 = BatchNormalization()(concat10_r)
conv5_r = Convolution2D(256, (3, 3), use_bias=False, name='conv5', padding='same', activation='relu')(concat10)
conv5 = BatchNormalization()(conv5_r)
concat11_r = merge_layers([conv2, sep1, sep2, sep3, sep4, sep6, conv5])
concat11 = BatchNormalization()(concat11_r)
sep7_r = SeparableConv2D(256, (5, 5), use_bias=False, name='sep7', padding='same', activation='relu')(concat11)
sep7 = BatchNormalization()(sep7_r)
concat12_r = merge_layers([sep4, sep2, sep6, sep7])
concat12 = BatchNormalization()(concat12_r)
convf = Convolution2D(num_classes, (1, 1), activation='softmax', use_bias=False)(concat12)
gap = GlobalAveragePooling2D()(convf)
model = Model(inputs=[inp], outputs=[gap])
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
return model
model = get_model()