-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdivide.v
164 lines (132 loc) · 4.6 KB
/
divide.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
(* https://github.com/coq/coq/commit/81c4c8bc418cdf42cc88249952dbba465068202c#diff-1c96c08a015db3ddaf186d60595064e9 *)
Require Export BinNums.
Require Import BinPos RelationClasses (* Morphisms Setoid *)
Equalities OrdersFacts GenericMinMax Bool NAxioms NProperties.
Require BinNatDef.
Definition divide p q := exists r, p*r = q.
Notation "( p | q )" := (divide p q) (at level 0).
Definition divide' p q := exists r, q = r*p.
Notation "( p |' q )" := (divide' p q) (at level 0).
(* Admissable, not getting old versions of Coq just for this *)
Axiom mul_comm : forall n m, n * m = m * n.
Fixpoint divmod x y q u :=
match x with
| 0 => (q,u)
| S x' => match u with
| 0 => divmod x' y (S q) y
| S u' => divmod x' y q u'
end
end.
Definition div x y :=
match y with
| 0 => y
| S y' => fst (divmod x y' 0 y')
end.
Definition modulo x y :=
match y with
| 0 => y
| S y' => y' - snd (divmod x y' 0 y')
end.
Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity).
(* Good candidates *)
Require Import NZAxioms NZBase.
Axiom pred_succ : forall n, pred (S n) = n.
Axiom add_0_l : forall n, 0 + n = n.
Axiom add_succ_l : forall n m, (S n) + m = S (n + m).
Axiom mul_0_l : forall n, 0 * n = 0.
Axiom mul_succ_l : forall n m, (S n) * m = n * m + m.
Axiom sub_0_r : forall n, n - 0 = n.
Axiom sub_succ_r : forall n m, n - (S m) = pred (n - m).
Hint Rewrite
pred_succ add_0_l add_succ_l mul_0_l mul_succ_l sub_0_r sub_succ_r : nz.
Ltac nzsimpl := autorewrite with nz.
Axiom div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
Axiom mod_mul : forall a b, b<>0 -> (a*b) mod b = 0.
Lemma mod_divide : forall a b, b <> 0 -> (a mod b = 0 <-> (b|a)).
Proof.
intros a b Hb. split.
- intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 2.
rewrite Hab. now nzsimpl.
- intros (c,Hc). rewrite <- Hc, mul_comm. now apply mod_mul.
Qed.
Lemma mod_divide' : forall a b, b <> 0 -> (a mod b = 0 <-> (b|'a)).
Proof.
intros a b Hb. split.
- intros Hab. exists (a/b). rewrite mul_comm.
rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
- intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.
Lemma mod_divide_if : forall a b, b <> 0 -> a mod b = 0 -> (b|a).
Proof.
intros a b Hb.
intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 2.
rewrite Hab. now nzsimpl.
Qed.
Lemma mod_divide_if' : forall a b, b <> 0 -> a mod b = 0 -> (b|'a).
Proof.
intros a b Hb.
intros Hab. exists (a/b). rewrite mul_comm. rewrite (div_mod a b Hb) at 1.
rewrite Hab; now nzsimpl.
Qed.
Require Import Patcher.Patch.
(*
Patch Proof mod_divide_if' mod_divide_if as patch_mod.
Print patch_mod.
*)
(* Above doesn't work because of rewrite location, but that's OK
for now *)
(* We isolate to just the location we care about; this is an adaptation
until PUMPKIN supports more features
*)
Theorem mod_divide_if_2: forall a b, b <> 0 -> a mod b = 0 -> (b|'a).
Proof.
intros a b Hb Hab. exists (a/b).
rewrite mul_comm. symmetry. rewrite (div_mod a b Hb) at 2.
rewrite Hab; now nzsimpl.
Qed.
Theorem mod_divide_if_2': forall a b, b <> 0 -> a mod b = 0 -> (b|a).
Proof.
intros a b Hb Hab. exists (a/b).
rewrite (div_mod a b Hb) at 2.
rewrite Hab; now nzsimpl.
Qed.
Definition cut :=
forall r a b,
b * r = a ->
a = r * b.
Patch Proof mod_divide_if_2 mod_divide_if_2' cut by (fun (H : cut) a b => H (a / b) a b) as patch.
Print patch.
Print patch_inv.
Lemma Zmod_divides : forall a b, b<>0 ->
(a mod b = 0 <-> exists c, a = b*c).
Proof.
intros. rewrite mod_divide; trivial.
split; intros (c,Hc); exists c; auto.
Qed.
Hint Resolve patch patch_inv.
Lemma Zmod_divides' : forall a b, b<>0 ->
(a mod b = 0 <-> exists c, a = b*c).
Proof.
intros. rewrite mod_divide'; trivial.
split; intros (c,Hc); exists c; auto.
Qed.
(* Above proof goes through now! *)
(* Does iff case work th same way, if we rwrite in the same locaton? *)
Lemma mod_divide_2 : forall a b, b <> 0 -> (a mod b = 0 <-> (b|a)).
Proof.
intros a b Hb. split.
- intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 2.
rewrite Hab. now nzsimpl.
- intros (c,Hc). rewrite <- Hc, mul_comm. now apply mod_mul.
Qed.
Lemma mod_divide_2' : forall a b, b <> 0 -> (a mod b = 0 <-> (b|'a)).
Proof.
intros a b Hb. split.
- intros Hab. exists (a/b). rewrite mul_comm. symmetry.
rewrite (div_mod a b Hb) at 2. rewrite Hab; now nzsimpl.
- intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.
(* Not yet, but not a big deal for now *)
(* all the adjustments we make are just because we don't handle changes
in hypotheses yet, really *)