-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathIntro.v
51 lines (42 loc) · 1.01 KB
/
Intro.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
(*
* Section 1 Example, using DEVOID
*)
Require Import Vector.
Require Import List.
Require Import Ornamental.Ornaments.
(* syntax to match paper *)
Notation vector := Vector.t.
(*
* map_length from the list standard library
*)
Check map_length.
(*
* Coq's vector map.
*)
Check Vector.map.
(* --- Bonus material --- *)
(*
* We can get Vector.map from List.map.
*)
Preprocess List.map as list_map'.
Find ornament list vector as ltv.
Lift list vector in list_map' as map_p.
Unpack map_p as map_u.
(* User-friendly version *)
Program Definition map {T1} {T2} (f : T1 -> T2) {n : nat} (v : vector T1 n) : vector T2 n :=
map_u T1 T2 f n v.
Next Obligation.
induction v.
- auto.
- simpl. f_equal. auto.
Defined.
(* We can show it's the same as Coq's map *)
Lemma map_correct :
forall {T1} {T2} (f : T1 -> T2) {n : nat} (v : vector T1 n),
map f v = Vector.map f v.
Proof.
intros. induction v.
- auto.
- simpl. rewrite <- IHv. unfold map. simpl.
destruct (map_obligation_1 T1 T2 f n v). auto.
Qed.