-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathuwurandom_markov_data.h
1167 lines (1159 loc) · 61.2 KB
/
uwurandom_markov_data.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef _UWURANDOM_MARKOV_DATA_H
#define _UWURANDOM_MARKOV_DATA_H
#include "uwurandom_types.h"
#include "uwurandom_markov_special.h"
static uwu_markov_choice catnonsense_ngram0_choices[] = {
{.next_ngram = 22, .cumulative_probability = 15},
{.next_ngram = 1, .cumulative_probability = 24},
{.next_ngram = 7, .cumulative_probability = 28},
{.next_ngram = 19, .cumulative_probability = 29},
{.next_ngram = 20, .cumulative_probability = 30}
};
static uwu_markov_choice catnonsense_ngram1_choices[] = {
{.next_ngram = 2, .cumulative_probability = 9}
};
static uwu_markov_choice catnonsense_ngram2_choices[] = {
{.next_ngram = 3, .cumulative_probability = 9}
};
static uwu_markov_choice catnonsense_ngram3_choices[] = {
{.next_ngram = 4, .cumulative_probability = 22},
{.next_ngram = 23, .cumulative_probability = 32},
{.next_ngram = 13, .cumulative_probability = 36},
{.next_ngram = 18, .cumulative_probability = 37},
{.next_ngram = 24, .cumulative_probability = 38}
};
static uwu_markov_choice catnonsense_ngram4_choices[] = {
{.next_ngram = 0, .cumulative_probability = 17},
{.next_ngram = 5, .cumulative_probability = 30}
};
static uwu_markov_choice catnonsense_ngram5_choices[] = {
{.next_ngram = 21, .cumulative_probability = 12},
{.next_ngram = 6, .cumulative_probability = 20}
};
static uwu_markov_choice catnonsense_ngram6_choices[] = {
{.next_ngram = 4, .cumulative_probability = 6},
{.next_ngram = 13, .cumulative_probability = 7},
{.next_ngram = 24, .cumulative_probability = 8}
};
static uwu_markov_choice catnonsense_ngram7_choices[] = {
{.next_ngram = 7, .cumulative_probability = 7},
{.next_ngram = 12, .cumulative_probability = 10},
{.next_ngram = 22, .cumulative_probability = 13},
{.next_ngram = 8, .cumulative_probability = 14}
};
static uwu_markov_choice catnonsense_ngram8_choices[] = {
{.next_ngram = 9, .cumulative_probability = 1}
};
static uwu_markov_choice catnonsense_ngram9_choices[] = {
{.next_ngram = 10, .cumulative_probability = 1}
};
static uwu_markov_choice catnonsense_ngram10_choices[] = {
{.next_ngram = 11, .cumulative_probability = 3}
};
static uwu_markov_choice catnonsense_ngram11_choices[] = {
{.next_ngram = 7, .cumulative_probability = 3}
};
static uwu_markov_choice catnonsense_ngram12_choices[] = {
{.next_ngram = 0, .cumulative_probability = 5},
{.next_ngram = 5, .cumulative_probability = 10}
};
static uwu_markov_choice catnonsense_ngram13_choices[] = {
{.next_ngram = 14, .cumulative_probability = 5}
};
static uwu_markov_choice catnonsense_ngram14_choices[] = {
{.next_ngram = 15, .cumulative_probability = 9}
};
static uwu_markov_choice catnonsense_ngram15_choices[] = {
{.next_ngram = 25, .cumulative_probability = 4},
{.next_ngram = 16, .cumulative_probability = 5},
{.next_ngram = 17, .cumulative_probability = 6}
};
static uwu_markov_choice catnonsense_ngram16_choices[] = {
{.next_ngram = 14, .cumulative_probability = 1}
};
static uwu_markov_choice catnonsense_ngram17_choices[] = {
{.next_ngram = 0, .cumulative_probability = 3},
{.next_ngram = 5, .cumulative_probability = 4}
};
static uwu_markov_choice catnonsense_ngram18_choices[] = {
{.next_ngram = 18, .cumulative_probability = 3},
{.next_ngram = 4, .cumulative_probability = 4}
};
static uwu_markov_choice catnonsense_ngram19_choices[] = {
{.next_ngram = 4, .cumulative_probability = 1}
};
static uwu_markov_choice catnonsense_ngram20_choices[] = {
{.next_ngram = 21, .cumulative_probability = 1}
};
static uwu_markov_choice catnonsense_ngram21_choices[] = {
{.next_ngram = 3, .cumulative_probability = 13}
};
static uwu_markov_choice catnonsense_ngram22_choices[] = {
{.next_ngram = 3, .cumulative_probability = 18}
};
static uwu_markov_choice catnonsense_ngram23_choices[] = {
{.next_ngram = 12, .cumulative_probability = 7},
{.next_ngram = 26, .cumulative_probability = 10}
};
static uwu_markov_choice catnonsense_ngram24_choices[] = {
{.next_ngram = 10, .cumulative_probability = 2}
};
static uwu_markov_choice catnonsense_ngram25_choices[] = {
{.next_ngram = 25, .cumulative_probability = 6},
{.next_ngram = 17, .cumulative_probability = 9}
};
static uwu_markov_choice catnonsense_ngram26_choices[] = {
{.next_ngram = 14, .cumulative_probability = 3}
};
static uwu_markov_table catnonsense_ngrams = {
.specials = NULL,
.initial_ngram=0,
.num_ngrams=27,
.ngrams = {
{.choices = catnonsense_ngram0_choices, .total_probability = 30, .character = 'r'}, // "('m', 'r')"
{.choices = catnonsense_ngram1_choices, .total_probability = 9, .character = 'a'}, // "('r', 'a')"
{.choices = catnonsense_ngram2_choices, .total_probability = 9, .character = 'o'}, // "('a', 'o')"
{.choices = catnonsense_ngram3_choices, .total_probability = 38, .character = 'w'}, // "('o', 'w')"
{.choices = catnonsense_ngram4_choices, .total_probability = 30, .character = 'm'}, // "('w', 'm')"
{.choices = catnonsense_ngram5_choices, .total_probability = 20, .character = 'e'}, // "('m', 'e')"
{.choices = catnonsense_ngram6_choices, .total_probability = 8, .character = 'w'}, // "('e', 'w')"
{.choices = catnonsense_ngram7_choices, .total_probability = 14, .character = 'r'}, // "('r', 'r')"
{.choices = catnonsense_ngram8_choices, .total_probability = 1, .character = 'p'}, // "('r', 'p')"
{.choices = catnonsense_ngram9_choices, .total_probability = 1, .character = 'p'}, // "('p', 'p')"
{.choices = catnonsense_ngram10_choices, .total_probability = 3, .character = 'u'}, // "('p', 'u')"
{.choices = catnonsense_ngram11_choices, .total_probability = 3, .character = 'r'}, // "('u', 'r')"
{.choices = catnonsense_ngram12_choices, .total_probability = 10, .character = 'm'}, // "('r', 'm')"
{.choices = catnonsense_ngram13_choices, .total_probability = 5, .character = 'n'}, // "('w', 'n')"
{.choices = catnonsense_ngram14_choices, .total_probability = 9, .character = 'y'}, // "('n', 'y')"
{.choices = catnonsense_ngram15_choices, .total_probability = 6, .character = 'a'}, // "('y', 'a')"
{.choices = catnonsense_ngram16_choices, .total_probability = 1, .character = 'n'}, // "('a', 'n')"
{.choices = catnonsense_ngram17_choices, .total_probability = 4, .character = 'm'}, // "('a', 'm')"
{.choices = catnonsense_ngram18_choices, .total_probability = 4, .character = 'w'}, // "('w', 'w')"
{.choices = catnonsense_ngram19_choices, .total_probability = 1, .character = 'w'}, // "('r', 'w')"
{.choices = catnonsense_ngram20_choices, .total_probability = 1, .character = 'e'}, // "('r', 'e')"
{.choices = catnonsense_ngram21_choices, .total_probability = 13, .character = 'o'}, // "('e', 'o')"
{.choices = catnonsense_ngram22_choices, .total_probability = 18, .character = 'o'}, // "('r', 'o')"
{.choices = catnonsense_ngram23_choices, .total_probability = 10, .character = 'r'}, // "('w', 'r')"
{.choices = catnonsense_ngram24_choices, .total_probability = 2, .character = 'p'}, // "('w', 'p')"
{.choices = catnonsense_ngram25_choices, .total_probability = 9, .character = 'a'}, // "('a', 'a')"
{.choices = catnonsense_ngram26_choices, .total_probability = 3, .character = 'n'}, // "('r', 'n')"
}
};
static uwu_markov_choice keysmash_ngram0_choices[] = {
{.next_ngram = 5, .cumulative_probability = 7},
{.next_ngram = 9, .cumulative_probability = 13},
{.next_ngram = 6, .cumulative_probability = 18},
{.next_ngram = 1, .cumulative_probability = 21},
{.next_ngram = 11, .cumulative_probability = 24},
{.next_ngram = 8, .cumulative_probability = 26},
{.next_ngram = 4, .cumulative_probability = 28},
{.next_ngram = 7, .cumulative_probability = 29},
{.next_ngram = 12, .cumulative_probability = 30}
};
static uwu_markov_choice keysmash_ngram1_choices[] = {
{.next_ngram = 2, .cumulative_probability = 4},
{.next_ngram = 7, .cumulative_probability = 6},
{.next_ngram = 3, .cumulative_probability = 7},
{.next_ngram = 8, .cumulative_probability = 8},
{.next_ngram = 6, .cumulative_probability = 9},
{.next_ngram = 4, .cumulative_probability = 10},
{.next_ngram = 0, .cumulative_probability = 11}
};
static uwu_markov_choice keysmash_ngram2_choices[] = {
{.next_ngram = 0, .cumulative_probability = 6},
{.next_ngram = 6, .cumulative_probability = 10},
{.next_ngram = 8, .cumulative_probability = 13},
{.next_ngram = 9, .cumulative_probability = 16},
{.next_ngram = 3, .cumulative_probability = 17},
{.next_ngram = 4, .cumulative_probability = 18},
{.next_ngram = 1, .cumulative_probability = 19},
{.next_ngram = 5, .cumulative_probability = 20}
};
static uwu_markov_choice keysmash_ngram3_choices[] = {
{.next_ngram = 4, .cumulative_probability = 2},
{.next_ngram = 2, .cumulative_probability = 4}
};
static uwu_markov_choice keysmash_ngram4_choices[] = {
{.next_ngram = 6, .cumulative_probability = 7},
{.next_ngram = 5, .cumulative_probability = 12},
{.next_ngram = 3, .cumulative_probability = 13},
{.next_ngram = 8, .cumulative_probability = 14},
{.next_ngram = 2, .cumulative_probability = 15},
{.next_ngram = 9, .cumulative_probability = 16},
{.next_ngram = 10, .cumulative_probability = 17}
};
static uwu_markov_choice keysmash_ngram5_choices[] = {
{.next_ngram = 8, .cumulative_probability = 7},
{.next_ngram = 9, .cumulative_probability = 11},
{.next_ngram = 6, .cumulative_probability = 14},
{.next_ngram = 2, .cumulative_probability = 17},
{.next_ngram = 0, .cumulative_probability = 20},
{.next_ngram = 4, .cumulative_probability = 23},
{.next_ngram = 13, .cumulative_probability = 25},
{.next_ngram = 12, .cumulative_probability = 27},
{.next_ngram = 7, .cumulative_probability = 28},
{.next_ngram = 14, .cumulative_probability = 29},
{.next_ngram = 5, .cumulative_probability = 30},
{.next_ngram = 11, .cumulative_probability = 31}
};
static uwu_markov_choice keysmash_ngram6_choices[] = {
{.next_ngram = 8, .cumulative_probability = 12},
{.next_ngram = 2, .cumulative_probability = 16},
{.next_ngram = 9, .cumulative_probability = 19},
{.next_ngram = 1, .cumulative_probability = 21},
{.next_ngram = 5, .cumulative_probability = 23},
{.next_ngram = 4, .cumulative_probability = 25},
{.next_ngram = 0, .cumulative_probability = 26}
};
static uwu_markov_choice keysmash_ngram7_choices[] = {
{.next_ngram = 0, .cumulative_probability = 4},
{.next_ngram = 2, .cumulative_probability = 5},
{.next_ngram = 4, .cumulative_probability = 6},
{.next_ngram = 1, .cumulative_probability = 7},
{.next_ngram = 5, .cumulative_probability = 8}
};
static uwu_markov_choice keysmash_ngram8_choices[] = {
{.next_ngram = 0, .cumulative_probability = 8},
{.next_ngram = 5, .cumulative_probability = 14},
{.next_ngram = 7, .cumulative_probability = 18},
{.next_ngram = 9, .cumulative_probability = 22},
{.next_ngram = 1, .cumulative_probability = 25},
{.next_ngram = 10, .cumulative_probability = 27},
{.next_ngram = 6, .cumulative_probability = 29},
{.next_ngram = 4, .cumulative_probability = 30},
{.next_ngram = 3, .cumulative_probability = 31},
{.next_ngram = 2, .cumulative_probability = 32},
{.next_ngram = 11, .cumulative_probability = 33},
{.next_ngram = 14, .cumulative_probability = 34}
};
static uwu_markov_choice keysmash_ngram9_choices[] = {
{.next_ngram = 5, .cumulative_probability = 5},
{.next_ngram = 4, .cumulative_probability = 9},
{.next_ngram = 2, .cumulative_probability = 12},
{.next_ngram = 6, .cumulative_probability = 15},
{.next_ngram = 0, .cumulative_probability = 17},
{.next_ngram = 12, .cumulative_probability = 18},
{.next_ngram = 15, .cumulative_probability = 19},
{.next_ngram = 16, .cumulative_probability = 20},
{.next_ngram = 1, .cumulative_probability = 21},
{.next_ngram = 8, .cumulative_probability = 22}
};
static uwu_markov_choice keysmash_ngram10_choices[] = {
{.next_ngram = 2, .cumulative_probability = 1},
{.next_ngram = 0, .cumulative_probability = 2},
{.next_ngram = 5, .cumulative_probability = 3}
};
static uwu_markov_choice keysmash_ngram11_choices[] = {
{.next_ngram = 12, .cumulative_probability = 3},
{.next_ngram = 0, .cumulative_probability = 4},
{.next_ngram = 6, .cumulative_probability = 5},
{.next_ngram = 9, .cumulative_probability = 6},
{.next_ngram = 15, .cumulative_probability = 7}
};
static uwu_markov_choice keysmash_ngram12_choices[] = {
{.next_ngram = 8, .cumulative_probability = 4},
{.next_ngram = 0, .cumulative_probability = 6},
{.next_ngram = 5, .cumulative_probability = 7}
};
static uwu_markov_choice keysmash_ngram13_choices[] = {
{.next_ngram = 11, .cumulative_probability = 2}
};
static uwu_markov_choice keysmash_ngram14_choices[] = {
{.next_ngram = 8, .cumulative_probability = 1},
{.next_ngram = 5, .cumulative_probability = 2}
};
static uwu_markov_choice keysmash_ngram15_choices[] = {
{.next_ngram = 8, .cumulative_probability = 2}
};
static uwu_markov_choice keysmash_ngram16_choices[] = {
{.next_ngram = 8, .cumulative_probability = 1}
};
static uwu_markov_table keysmash_ngrams = {
.specials = NULL,
.initial_ngram=-1,
.num_ngrams=17,
.ngrams = {
{.choices = keysmash_ngram0_choices, .total_probability = 30, .character = 'a'}, // "('a',)"
{.choices = keysmash_ngram1_choices, .total_probability = 11, .character = 'l'}, // "('l',)"
{.choices = keysmash_ngram2_choices, .total_probability = 20, .character = 'k'}, // "('k',)"
{.choices = keysmash_ngram3_choices, .total_probability = 4, .character = 's'}, // "('s',)"
{.choices = keysmash_ngram4_choices, .total_probability = 17, .character = 'd'}, // "('d',)"
{.choices = keysmash_ngram5_choices, .total_probability = 31, .character = 'h'}, // "('h',)"
{.choices = keysmash_ngram6_choices, .total_probability = 26, .character = 'f'}, // "('f',)"
{.choices = keysmash_ngram7_choices, .total_probability = 8, .character = ';'}, // "(';',)"
{.choices = keysmash_ngram8_choices, .total_probability = 34, .character = 'g'}, // "('g',)"
{.choices = keysmash_ngram9_choices, .total_probability = 22, .character = 'j'}, // "('j',)"
{.choices = keysmash_ngram10_choices, .total_probability = 3, .character = 'b'}, // "('b',)"
{.choices = keysmash_ngram11_choices, .total_probability = 7, .character = 'u'}, // "('u',)"
{.choices = keysmash_ngram12_choices, .total_probability = 7, .character = 'r'}, // "('r',)"
{.choices = keysmash_ngram13_choices, .total_probability = 2, .character = 'i'}, // "('i',)"
{.choices = keysmash_ngram14_choices, .total_probability = 2, .character = 'n'}, // "('n',)"
{.choices = keysmash_ngram15_choices, .total_probability = 2, .character = 'e'}, // "('e',)"
{.choices = keysmash_ngram16_choices, .total_probability = 1, .character = 'o'}, // "('o',)"
}
};
static uwu_markov_choice scrunkly_ngram0_choices[] = {
{.next_ngram = 1, .cumulative_probability = 15},
{.next_ngram = 67, .cumulative_probability = 16}
};
static uwu_markov_choice scrunkly_ngram1_choices[] = {
{.next_ngram = 2, .cumulative_probability = 14},
{.next_ngram = 12, .cumulative_probability = 16},
{.next_ngram = 65, .cumulative_probability = 17},
{.next_ngram = 115, .cumulative_probability = 18}
};
static uwu_markov_choice scrunkly_ngram2_choices[] = {
{.next_ngram = 9, .cumulative_probability = 6},
{.next_ngram = 59, .cumulative_probability = 11},
{.next_ngram = 3, .cumulative_probability = 15},
{.next_ngram = 20, .cumulative_probability = 18},
{.next_ngram = 30, .cumulative_probability = 21},
{.next_ngram = 71, .cumulative_probability = 24},
{.next_ngram = 82, .cumulative_probability = 26},
{.next_ngram = 86, .cumulative_probability = 28},
{.next_ngram = 138, .cumulative_probability = 29},
{.next_ngram = 56, .cumulative_probability = 30}
};
static uwu_markov_choice scrunkly_ngram3_choices[] = {
{.next_ngram = 4, .cumulative_probability = 8}
};
static uwu_markov_choice scrunkly_ngram4_choices[] = {
{.next_ngram = 5, .cumulative_probability = 3},
{.next_ngram = 107, .cumulative_probability = 6},
{.next_ngram = 47, .cumulative_probability = 7},
{.next_ngram = 63, .cumulative_probability = 8},
{.next_ngram = 102, .cumulative_probability = 9},
{.next_ngram = 149, .cumulative_probability = 10},
{.next_ngram = 89, .cumulative_probability = 11}
};
static uwu_markov_choice scrunkly_ngram5_choices[] = {
{.next_ngram = 6, .cumulative_probability = 3},
{.next_ngram = 42, .cumulative_probability = 6},
{.next_ngram = 36, .cumulative_probability = 9},
{.next_ngram = 118, .cumulative_probability = 12}
};
static uwu_markov_choice scrunkly_ngram6_choices[] = {
{.next_ngram = 7, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram7_choices[] = {
{.next_ngram = 8, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram8_choices[] = {
{.next_ngram = 2, .cumulative_probability = 14},
{.next_ngram = 65, .cumulative_probability = 16},
{.next_ngram = 169, .cumulative_probability = 17}
};
static uwu_markov_choice scrunkly_ngram9_choices[] = {
{.next_ngram = 0, .cumulative_probability = 7},
{.next_ngram = 10, .cumulative_probability = 11},
{.next_ngram = 37, .cumulative_probability = 15},
{.next_ngram = 53, .cumulative_probability = 16}
};
static uwu_markov_choice scrunkly_ngram10_choices[] = {
{.next_ngram = 11, .cumulative_probability = 4},
{.next_ngram = 89, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram11_choices[] = {
{.next_ngram = 12, .cumulative_probability = 4},
{.next_ngram = 65, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram12_choices[] = {
{.next_ngram = 13, .cumulative_probability = 4},
{.next_ngram = 84, .cumulative_probability = 5},
{.next_ngram = 62, .cumulative_probability = 6},
{.next_ngram = 172, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram13_choices[] = {
{.next_ngram = 14, .cumulative_probability = 4},
{.next_ngram = 92, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram14_choices[] = {
{.next_ngram = 15, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram15_choices[] = {
{.next_ngram = 70, .cumulative_probability = 3},
{.next_ngram = 16, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram16_choices[] = {
{.next_ngram = 17, .cumulative_probability = 3},
{.next_ngram = 85, .cumulative_probability = 6},
{.next_ngram = 130, .cumulative_probability = 8},
{.next_ngram = 119, .cumulative_probability = 9}
};
static uwu_markov_choice scrunkly_ngram17_choices[] = {
{.next_ngram = 18, .cumulative_probability = 2},
{.next_ngram = 75, .cumulative_probability = 4},
{.next_ngram = 98, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram18_choices[] = {
{.next_ngram = 38, .cumulative_probability = 3},
{.next_ngram = 19, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram19_choices[] = {
{.next_ngram = 59, .cumulative_probability = 2},
{.next_ngram = 20, .cumulative_probability = 3},
{.next_ngram = 60, .cumulative_probability = 4},
{.next_ngram = 3, .cumulative_probability = 5},
{.next_ngram = 86, .cumulative_probability = 6},
{.next_ngram = 138, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram20_choices[] = {
{.next_ngram = 27, .cumulative_probability = 6},
{.next_ngram = 21, .cumulative_probability = 8},
{.next_ngram = 44, .cumulative_probability = 9}
};
static uwu_markov_choice scrunkly_ngram21_choices[] = {
{.next_ngram = 22, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram22_choices[] = {
{.next_ngram = 146, .cumulative_probability = 3},
{.next_ngram = 23, .cumulative_probability = 5},
{.next_ngram = 38, .cumulative_probability = 7},
{.next_ngram = 50, .cumulative_probability = 8}
};
static uwu_markov_choice scrunkly_ngram23_choices[] = {
{.next_ngram = 24, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram24_choices[] = {
{.next_ngram = 25, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram25_choices[] = {
{.next_ngram = 26, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram26_choices[] = {
{.next_ngram = 8, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram27_choices[] = {
{.next_ngram = 28, .cumulative_probability = 5},
{.next_ngram = 62, .cumulative_probability = 6},
{.next_ngram = 154, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram28_choices[] = {
{.next_ngram = 29, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram29_choices[] = {
{.next_ngram = 30, .cumulative_probability = 2},
{.next_ngram = 49, .cumulative_probability = 3},
{.next_ngram = 60, .cumulative_probability = 4},
{.next_ngram = 59, .cumulative_probability = 5},
{.next_ngram = 120, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram30_choices[] = {
{.next_ngram = 31, .cumulative_probability = 3},
{.next_ngram = 61, .cumulative_probability = 5},
{.next_ngram = 76, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram31_choices[] = {
{.next_ngram = 32, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram32_choices[] = {
{.next_ngram = 33, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram33_choices[] = {
{.next_ngram = 34, .cumulative_probability = 2},
{.next_ngram = 65, .cumulative_probability = 3},
{.next_ngram = 169, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram34_choices[] = {
{.next_ngram = 35, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram35_choices[] = {
{.next_ngram = 36, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram36_choices[] = {
{.next_ngram = 9, .cumulative_probability = 2},
{.next_ngram = 20, .cumulative_probability = 4},
{.next_ngram = 30, .cumulative_probability = 5},
{.next_ngram = 59, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram37_choices[] = {
{.next_ngram = 38, .cumulative_probability = 3},
{.next_ngram = 19, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram38_choices[] = {
{.next_ngram = 39, .cumulative_probability = 3},
{.next_ngram = 38, .cumulative_probability = 6},
{.next_ngram = 19, .cumulative_probability = 9},
{.next_ngram = 97, .cumulative_probability = 11},
{.next_ngram = 131, .cumulative_probability = 13},
{.next_ngram = 156, .cumulative_probability = 14}
};
static uwu_markov_choice scrunkly_ngram39_choices[] = {
{.next_ngram = 40, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram40_choices[] = {
{.next_ngram = 41, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram41_choices[] = {
{.next_ngram = 5, .cumulative_probability = 2},
{.next_ngram = 11, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram42_choices[] = {
{.next_ngram = 43, .cumulative_probability = 1},
{.next_ngram = 114, .cumulative_probability = 2},
{.next_ngram = 125, .cumulative_probability = 3},
{.next_ngram = 85, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram43_choices[] = {
{.next_ngram = 44, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram44_choices[] = {
{.next_ngram = 45, .cumulative_probability = 3},
{.next_ngram = 132, .cumulative_probability = 4},
{.next_ngram = 46, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram45_choices[] = {
{.next_ngram = 46, .cumulative_probability = 3},
{.next_ngram = 45, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram46_choices[] = {
{.next_ngram = 9, .cumulative_probability = 2},
{.next_ngram = 3, .cumulative_probability = 3},
{.next_ngram = 59, .cumulative_probability = 4},
{.next_ngram = 82, .cumulative_probability = 5},
{.next_ngram = 60, .cumulative_probability = 6},
{.next_ngram = 71, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram47_choices[] = {
{.next_ngram = 48, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram48_choices[] = {
{.next_ngram = 2, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram49_choices[] = {
{.next_ngram = 22, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram50_choices[] = {
{.next_ngram = 51, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram51_choices[] = {
{.next_ngram = 52, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram52_choices[] = {
{.next_ngram = 8, .cumulative_probability = 2},
{.next_ngram = 104, .cumulative_probability = 4},
{.next_ngram = 4, .cumulative_probability = 6},
{.next_ngram = 81, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram53_choices[] = {
{.next_ngram = 54, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram54_choices[] = {
{.next_ngram = 55, .cumulative_probability = 1},
{.next_ngram = 68, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram55_choices[] = {
{.next_ngram = 56, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram56_choices[] = {
{.next_ngram = 57, .cumulative_probability = 1},
{.next_ngram = 62, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram57_choices[] = {
{.next_ngram = 58, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram58_choices[] = {
{.next_ngram = 46, .cumulative_probability = 3},
{.next_ngram = 143, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram59_choices[] = {
{.next_ngram = 91, .cumulative_probability = 6},
{.next_ngram = 75, .cumulative_probability = 10},
{.next_ngram = 18, .cumulative_probability = 13},
{.next_ngram = 144, .cumulative_probability = 15}
};
static uwu_markov_choice scrunkly_ngram60_choices[] = {
{.next_ngram = 5, .cumulative_probability = 2},
{.next_ngram = 135, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram61_choices[] = {
{.next_ngram = 27, .cumulative_probability = 1},
{.next_ngram = 136, .cumulative_probability = 2},
{.next_ngram = 137, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram62_choices[] = {
{.next_ngram = 9, .cumulative_probability = 2},
{.next_ngram = 120, .cumulative_probability = 3},
{.next_ngram = 3, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram63_choices[] = {
{.next_ngram = 64, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram64_choices[] = {
{.next_ngram = 2, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram65_choices[] = {
{.next_ngram = 85, .cumulative_probability = 3},
{.next_ngram = 95, .cumulative_probability = 5},
{.next_ngram = 66, .cumulative_probability = 6},
{.next_ngram = 114, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram66_choices[] = {
{.next_ngram = 67, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram67_choices[] = {
{.next_ngram = 54, .cumulative_probability = 1},
{.next_ngram = 168, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram68_choices[] = {
{.next_ngram = 69, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram69_choices[] = {
{.next_ngram = 70, .cumulative_probability = 1},
{.next_ngram = 16, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram70_choices[] = {
{.next_ngram = 59, .cumulative_probability = 4},
{.next_ngram = 9, .cumulative_probability = 7},
{.next_ngram = 49, .cumulative_probability = 9},
{.next_ngram = 20, .cumulative_probability = 11},
{.next_ngram = 71, .cumulative_probability = 12},
{.next_ngram = 82, .cumulative_probability = 13},
{.next_ngram = 86, .cumulative_probability = 14},
{.next_ngram = 162, .cumulative_probability = 15},
{.next_ngram = 138, .cumulative_probability = 16}
};
static uwu_markov_choice scrunkly_ngram71_choices[] = {
{.next_ngram = 117, .cumulative_probability = 4},
{.next_ngram = 72, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram72_choices[] = {
{.next_ngram = 73, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram73_choices[] = {
{.next_ngram = 74, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram74_choices[] = {
{.next_ngram = 43, .cumulative_probability = 1},
{.next_ngram = 113, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram75_choices[] = {
{.next_ngram = 76, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram76_choices[] = {
{.next_ngram = 77, .cumulative_probability = 5},
{.next_ngram = 96, .cumulative_probability = 9}
};
static uwu_markov_choice scrunkly_ngram77_choices[] = {
{.next_ngram = 78, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram78_choices[] = {
{.next_ngram = 79, .cumulative_probability = 4},
{.next_ngram = 93, .cumulative_probability = 7},
{.next_ngram = 123, .cumulative_probability = 8}
};
static uwu_markov_choice scrunkly_ngram79_choices[] = {
{.next_ngram = 80, .cumulative_probability = 8},
{.next_ngram = 90, .cumulative_probability = 11},
{.next_ngram = 110, .cumulative_probability = 12},
{.next_ngram = 134, .cumulative_probability = 13}
};
static uwu_markov_choice scrunkly_ngram80_choices[] = {
{.next_ngram = 81, .cumulative_probability = 6},
{.next_ngram = 8, .cumulative_probability = 8}
};
static uwu_markov_choice scrunkly_ngram81_choices[] = {
{.next_ngram = 70, .cumulative_probability = 5},
{.next_ngram = 16, .cumulative_probability = 8}
};
static uwu_markov_choice scrunkly_ngram82_choices[] = {
{.next_ngram = 83, .cumulative_probability = 2},
{.next_ngram = 106, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram83_choices[] = {
{.next_ngram = 1, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram84_choices[] = {
{.next_ngram = 85, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram85_choices[] = {
{.next_ngram = 0, .cumulative_probability = 8},
{.next_ngram = 10, .cumulative_probability = 9},
{.next_ngram = 33, .cumulative_probability = 10}
};
static uwu_markov_choice scrunkly_ngram86_choices[] = {
{.next_ngram = 87, .cumulative_probability = 3},
{.next_ngram = 52, .cumulative_probability = 5},
{.next_ngram = 152, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram87_choices[] = {
{.next_ngram = 88, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram88_choices[] = {
{.next_ngram = 89, .cumulative_probability = 7}
};
static uwu_markov_choice scrunkly_ngram89_choices[] = {
{.next_ngram = 79, .cumulative_probability = 8},
{.next_ngram = 93, .cumulative_probability = 11},
{.next_ngram = 153, .cumulative_probability = 12},
{.next_ngram = 13, .cumulative_probability = 13},
{.next_ngram = 173, .cumulative_probability = 14}
};
static uwu_markov_choice scrunkly_ngram90_choices[] = {
{.next_ngram = 70, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram91_choices[] = {
{.next_ngram = 148, .cumulative_probability = 3},
{.next_ngram = 92, .cumulative_probability = 5},
{.next_ngram = 151, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram92_choices[] = {
{.next_ngram = 78, .cumulative_probability = 2},
{.next_ngram = 111, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram93_choices[] = {
{.next_ngram = 133, .cumulative_probability = 4},
{.next_ngram = 94, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram94_choices[] = {
{.next_ngram = 65, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram95_choices[] = {
{.next_ngram = 76, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram96_choices[] = {
{.next_ngram = 89, .cumulative_probability = 4},
{.next_ngram = 102, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram97_choices[] = {
{.next_ngram = 17, .cumulative_probability = 2},
{.next_ngram = 43, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram98_choices[] = {
{.next_ngram = 99, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram99_choices[] = {
{.next_ngram = 100, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram100_choices[] = {
{.next_ngram = 101, .cumulative_probability = 1},
{.next_ngram = 88, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram101_choices[] = {
{.next_ngram = 79, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram102_choices[] = {
{.next_ngram = 103, .cumulative_probability = 2},
{.next_ngram = 105, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram103_choices[] = {
{.next_ngram = 52, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram104_choices[] = {
{.next_ngram = 38, .cumulative_probability = 3},
{.next_ngram = 97, .cumulative_probability = 4},
{.next_ngram = 19, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram105_choices[] = {
{.next_ngram = 7, .cumulative_probability = 1},
{.next_ngram = 42, .cumulative_probability = 2},
{.next_ngram = 118, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram106_choices[] = {
{.next_ngram = 107, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram107_choices[] = {
{.next_ngram = 108, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram108_choices[] = {
{.next_ngram = 109, .cumulative_probability = 3},
{.next_ngram = 22, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram109_choices[] = {
{.next_ngram = 8, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram110_choices[] = {
{.next_ngram = 111, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram111_choices[] = {
{.next_ngram = 112, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram112_choices[] = {
{.next_ngram = 113, .cumulative_probability = 1},
{.next_ngram = 85, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram113_choices[] = {
{.next_ngram = 87, .cumulative_probability = 1},
{.next_ngram = 164, .cumulative_probability = 2},
{.next_ngram = 52, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram114_choices[] = {
{.next_ngram = 83, .cumulative_probability = 1},
{.next_ngram = 106, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram115_choices[] = {
{.next_ngram = 116, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram116_choices[] = {
{.next_ngram = 9, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram117_choices[] = {
{.next_ngram = 5, .cumulative_probability = 5},
{.next_ngram = 102, .cumulative_probability = 6}
};
static uwu_markov_choice scrunkly_ngram118_choices[] = {
{.next_ngram = 70, .cumulative_probability = 2},
{.next_ngram = 16, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram119_choices[] = {
{.next_ngram = 62, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram120_choices[] = {
{.next_ngram = 121, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram121_choices[] = {
{.next_ngram = 122, .cumulative_probability = 2},
{.next_ngram = 104, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram122_choices[] = {
{.next_ngram = 78, .cumulative_probability = 1},
{.next_ngram = 159, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram123_choices[] = {
{.next_ngram = 124, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram124_choices[] = {
{.next_ngram = 20, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram125_choices[] = {
{.next_ngram = 126, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram126_choices[] = {
{.next_ngram = 127, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram127_choices[] = {
{.next_ngram = 128, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram128_choices[] = {
{.next_ngram = 129, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram129_choices[] = {
{.next_ngram = 16, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram130_choices[] = {
{.next_ngram = 104, .cumulative_probability = 2},
{.next_ngram = 4, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram131_choices[] = {
{.next_ngram = 117, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram132_choices[] = {
{.next_ngram = 130, .cumulative_probability = 1},
{.next_ngram = 113, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram133_choices[] = {
{.next_ngram = 8, .cumulative_probability = 3},
{.next_ngram = 81, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram134_choices[] = {
{.next_ngram = 97, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram135_choices[] = {
{.next_ngram = 61, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram136_choices[] = {
{.next_ngram = 105, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram137_choices[] = {
{.next_ngram = 36, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram138_choices[] = {
{.next_ngram = 141, .cumulative_probability = 3},
{.next_ngram = 139, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram139_choices[] = {
{.next_ngram = 140, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram140_choices[] = {
{.next_ngram = 69, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram141_choices[] = {
{.next_ngram = 142, .cumulative_probability = 3},
{.next_ngram = 163, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram142_choices[] = {
{.next_ngram = 58, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram143_choices[] = {
{.next_ngram = 141, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram144_choices[] = {
{.next_ngram = 145, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram145_choices[] = {
{.next_ngram = 146, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram146_choices[] = {
{.next_ngram = 147, .cumulative_probability = 4},
{.next_ngram = 171, .cumulative_probability = 5}
};
static uwu_markov_choice scrunkly_ngram147_choices[] = {
{.next_ngram = 59, .cumulative_probability = 1},
{.next_ngram = 86, .cumulative_probability = 2},
{.next_ngram = 138, .cumulative_probability = 3},
{.next_ngram = 3, .cumulative_probability = 4}
};
static uwu_markov_choice scrunkly_ngram148_choices[] = {
{.next_ngram = 96, .cumulative_probability = 2},
{.next_ngram = 100, .cumulative_probability = 3}
};
static uwu_markov_choice scrunkly_ngram149_choices[] = {
{.next_ngram = 150, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram150_choices[] = {
{.next_ngram = 52, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram151_choices[] = {
{.next_ngram = 88, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram152_choices[] = {
{.next_ngram = 89, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram153_choices[] = {
{.next_ngram = 7, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram154_choices[] = {
{.next_ngram = 155, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram155_choices[] = {
{.next_ngram = 29, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram156_choices[] = {
{.next_ngram = 157, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram157_choices[] = {
{.next_ngram = 158, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram158_choices[] = {
{.next_ngram = 121, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram159_choices[] = {
{.next_ngram = 160, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram160_choices[] = {
{.next_ngram = 161, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram161_choices[] = {
{.next_ngram = 16, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram162_choices[] = {
{.next_ngram = 151, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram163_choices[] = {
{.next_ngram = 143, .cumulative_probability = 1},
{.next_ngram = 132, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram164_choices[] = {
{.next_ngram = 165, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram165_choices[] = {
{.next_ngram = 166, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram166_choices[] = {
{.next_ngram = 167, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram167_choices[] = {
{.next_ngram = 16, .cumulative_probability = 1},
{.next_ngram = 70, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram168_choices[] = {
{.next_ngram = 86, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram169_choices[] = {
{.next_ngram = 170, .cumulative_probability = 1},
{.next_ngram = 12, .cumulative_probability = 2}
};
static uwu_markov_choice scrunkly_ngram170_choices[] = {
{.next_ngram = 74, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram171_choices[] = {
{.next_ngram = 85, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram172_choices[] = {
{.next_ngram = 70, .cumulative_probability = 1}
};
static uwu_markov_choice scrunkly_ngram173_choices[] = {
{.next_ngram = 167, .cumulative_probability = 1}
};
static uwu_markov_table scrunkly_ngrams = {
.specials = scrunkly_specials,
.initial_ngram=44,
.num_ngrams=174,
.ngrams = {
{.choices = scrunkly_ngram0_choices, .total_probability = 16, .character = 'h'}, // "('t', 'h')"
{.choices = scrunkly_ngram1_choices, .total_probability = 18, .character = 'e'}, // "('h', 'e')"
{.choices = scrunkly_ngram2_choices, .total_probability = 30, .character = ' '}, // "('e', ' ')"
{.choices = scrunkly_ngram3_choices, .total_probability = 8, .character = 'l'}, // "(' ', 'l')"
{.choices = scrunkly_ngram4_choices, .total_probability = 11, .character = 'i'}, // "('l', 'i')"
{.choices = scrunkly_ngram5_choices, .total_probability = 12, .character = 't'}, // "('i', 't')"
{.choices = scrunkly_ngram6_choices, .total_probability = 3, .character = 't'}, // "('t', 't')"
{.choices = scrunkly_ngram7_choices, .total_probability = 5, .character = 'l'}, // "('t', 'l')"
{.choices = scrunkly_ngram8_choices, .total_probability = 17, .character = 'e'}, // "('l', 'e')"
{.choices = scrunkly_ngram9_choices, .total_probability = 16, .character = 't'}, // "(' ', 't')"
{.choices = scrunkly_ngram10_choices, .total_probability = 5, .character = 'i'}, // "('t', 'i')"