This repository has been archived by the owner on Oct 9, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilz.py
240 lines (179 loc) · 7.13 KB
/
utilz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import re
import sys
import glob
from pprint import pprint, pformat
import logging
from pprint import pprint, pformat
logging.basicConfig(format="%(levelname)-8s:%(filename)s.%(funcName)20 >> %(message)s")
log = logging.getLogger(__name__)
log.setLevel(logging.INFO)
import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F
from torch.autograd import Variable
import numpy as np
from functools import partial
from collections import namedtuple, defaultdict, Counter
from anikattu.tokenizer import word_tokenize
from anikattu.tokenstring import TokenString
from anikattu.datafeed import DataFeed, MultiplexedDataFeed
from anikattu.dataset import NLPDataset as Dataset, NLPDatasetList as DatasetList
from anikattu.utilz import tqdm, ListTable
from anikattu.vocab import Vocab
from anikattu.utilz import Var, LongVar, init_hidden, pad_seq
from nltk.tokenize import WordPunctTokenizer
word_punct_tokenizer = WordPunctTokenizer()
word_tokenize = word_punct_tokenizer.tokenize
import tamil
VOCAB = ['PAD', 'UNK', 'GO', 'EOS']
PAD = VOCAB.index('PAD')
"""
Local Utilities, Helper Functions
"""
Sample = namedtuple('Sample', ['id', 'gender', 'sequence'])
def unicodeToAscii(s):
import unicodedata
return ''.join(
c for c in unicodedata.normalize('NFKC', s)
if unicodedata.category(c) != 'Mn'
)
PUNCT_SYMBOLS = '/,<>:;\'"[]{}\|!@#$%^&*()_+-=~` '
def remove_punct_symbols(sentence):
for i in PUNCT_SYMBOLS:
sentence = sentence.replace(i, ' ')
return sentence
def count_UNKS(sentence, vocab):
return sum(
[1 for i in sentence if vocab[i] == vocab['UNK']]
)
def vocab_filter(sentence, vocab):
return [i if vocab[i] != vocab['UNK'] else 'UNK' for i in sentence ]
class NameDataset(Dataset):
def __init__(self, name, dataset, input_vocab, gender_vocab, pretrain_samples):
super().__init__(name, dataset, input_vocab, input_vocab)
self.gender_vocab = gender_vocab
self.pretrainset = pretrain_samples
def load_data(config,
dirname='../raw_dataset/tamil-names',
max_sample_size=None):
samples = []
skipped = 0
input_vocab = Counter()
gender_vocab = Counter()
#########################################################
# Read names
#########################################################
def read_data(filename='names.csv'):
data = open(filename).readlines()
samples = []
for datum in data:
name = datum.split(',')[1]
name = ''.join(name.split())
samples.append(remove_punct_symbols(name))
return samples
def read_dirs(dirs=['boy', 'girl']):
samples = []
for d in dirs:
for filename in os.listdir('{}/{}'.format(dirname, d)):
s = read_data('{}/{}/{}'.format(dirname, d, filename))
s = [(d, n) for n in s]
samples.extend(s)
return list(set(samples))
raw_samples = read_dirs()
log.info('read {} names'.format(len(raw_samples)))
#########################################################
# Read tamil words
#########################################################
def read_words(filename=config.HPCONFIG.lm_dataset_path):
samples = []
for line in tqdm(open(filename).readlines()[:config.HPCONFIG.lm_samples_count],
'reading lm file for words'):
s = line.split()
s = [('neutral', n) for n in s]
samples.extend(s)
return list(set(samples))
pretrain_samples = read_words()
#########################################################
# build vocab
#########################################################
all_samples = raw_samples + pretrain_samples
log.info('building input_vocabulary...')
for gender, name in tqdm(all_samples, desc='building vocab'):
name = remove_punct_symbols(name)
name = tamil.utf8.get_letters(name.strip())
if len(name):
input_vocab.update(name)
gender_vocab.update([gender])
vocab = Vocab(input_vocab,
special_tokens = VOCAB,
freq_threshold=50)
print(gender_vocab)
gender_vocab = Vocab(gender_vocab,
special_tokens = [])
if config.CONFIG.write_vocab_to_file:
vocab.write_to_file(config.ROOT_DIR + '/input_vocab.csv')
gender_vocab.write_to_file(config.ROOT_DIR + '/gender_vocab.csv')
def build_samples(raw_samples):
samples = []
for i, (gender, name) in enumerate(
tqdm(raw_samples, desc='processing names')):
try:
#name = remove_punct_symbols(name)
name = tamil.utf8.get_letters(name.strip())
if len(name) < 2:
continue
log.debug('===')
log.debug(pformat(name))
samples.append(
Sample('{}.{}'.format(gender, i),
gender,
name
)
)
if max_sample_size and len(samples) > max_sample_size:
break
except:
skipped += 1
log.exception('{}'.format(name))
return samples
pretrain_samples = build_samples(pretrain_samples)
samples = build_samples(raw_samples)
print('skipped {} samples'.format(skipped))
pivot = int(len(samples) * config.CONFIG.split_ratio)
train_samples, test_samples = samples[:pivot], samples[pivot:]
#train_samples, test_samples = samples, []
#train_samples = sorted(train_samples, key=lambda x: len(x.sequence), reverse=True)
return NameDataset('names',
(train_samples, test_samples),
pretrain_samples = pretrain_samples,
input_vocab = vocab,
gender_vocab = gender_vocab)
# ## Loss and accuracy function
def loss(ti, output, batch, loss_function, *args, **kwargs):
indices, (gender, sequence), _ = batch
output, state = output
mask = sequence[:, ti+1] > 0
output = output * mask.unsqueeze(1).expand_as(output).float()
return loss_function(output, sequence[:, ti+1])
def accuracy(ti, output, batch, *args, **kwargs):
indices, (gender, sequence,), _ = batch
output, state = output
return (output.max(dim=1)[1] == sequence[:, ti+1]).sum().float()/float(answer.size(0))/float(answer.size(1))
def batchop(datapoints, VOCAB, GENDER, config, *args, **kwargs):
indices = [d.id for d in datapoints]
sequence = []
gender = []
for d in datapoints:
sequence.append([VOCAB['GO']]
+ [VOCAB[w] for w in d.sequence]
+ [VOCAB['EOS']]
)
gender.append(GENDER[d.gender])
sequence = LongVar(config, pad_seq(sequence))
gender = LongVar(config, gender)
batch = indices, (gender, sequence), ()
return batch
def portion(dataset, percent):
return dataset[ : int(len(dataset) * percent) ]