forked from decred/dcrd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblockmanager.go
2755 lines (2430 loc) · 87.6 KB
/
blockmanager.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2013-2016 The btcsuite developers
// Copyright (c) 2015-2018 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"encoding/binary"
"fmt"
"math/rand"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
"github.com/decred/dcrd/blockchain"
"github.com/decred/dcrd/blockchain/stake"
"github.com/decred/dcrd/chaincfg"
"github.com/decred/dcrd/chaincfg/chainhash"
"github.com/decred/dcrd/database"
"github.com/decred/dcrd/dcrutil"
"github.com/decred/dcrd/mempool"
"github.com/decred/dcrd/wire"
)
const (
// minInFlightBlocks is the minimum number of blocks that should be
// in the request queue for headers-first mode before requesting
// more.
minInFlightBlocks = 10
// blockDbNamePrefix is the prefix for the block database name. The
// database type is appended to this value to form the full block
// database name.
blockDbNamePrefix = "blocks"
// maxResendLimit is the maximum number of times a node can resend a
// block or transaction before it is dropped.
maxResendLimit = 3
// maxRejectedTxns is the maximum number of rejected transactions
// hashes to store in memory.
maxRejectedTxns = 1000
// maxRequestedBlocks is the maximum number of requested block
// hashes to store in memory.
maxRequestedBlocks = wire.MaxInvPerMsg
// maxRequestedTxns is the maximum number of requested transactions
// hashes to store in memory.
maxRequestedTxns = wire.MaxInvPerMsg
// maxLotteryDataBlockDelta is maximum number of blocks from the current
// best block to cut off block lottery calculation data for. Below
// bestBlockHeight-maxLotteryDataBlockDelta, block lottery data will
// not be calculated. This helps to reduce exhaustion attacks that
// might arise from sending old orphan blocks and forcing nodes to
// do expensive lottery data look ups for these blocks. It is
// equivalent to 24 hours of work on mainnet.
maxLotteryDataBlockDelta = 288
)
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
var zeroHash chainhash.Hash
// newPeerMsg signifies a newly connected peer to the block handler.
type newPeerMsg struct {
peer *serverPeer
}
// blockMsg packages a Decred block message and the peer it came from together
// so the block handler has access to that information.
type blockMsg struct {
block *dcrutil.Block
peer *serverPeer
}
// invMsg packages a Decred inv message and the peer it came from together
// so the block handler has access to that information.
type invMsg struct {
inv *wire.MsgInv
peer *serverPeer
}
// headersMsg packages a Decred headers message and the peer it came from
// together so the block handler has access to that information.
type headersMsg struct {
headers *wire.MsgHeaders
peer *serverPeer
}
// donePeerMsg signifies a newly disconnected peer to the block handler.
type donePeerMsg struct {
peer *serverPeer
}
// txMsg packages a Decred tx message and the peer it came from together
// so the block handler has access to that information.
type txMsg struct {
tx *dcrutil.Tx
peer *serverPeer
}
// getSyncPeerMsg is a message type to be sent across the message channel for
// retrieving the current sync peer.
type getSyncPeerMsg struct {
reply chan *serverPeer
}
// requestFromPeerMsg is a message type to be sent across the message channel
// for requesting either blocks or transactions from a given peer. It routes
// this through the block manager so the block manager doesn't ban the peer
// when it sends this information back.
type requestFromPeerMsg struct {
peer *serverPeer
blocks []*chainhash.Hash
txs []*chainhash.Hash
reply chan requestFromPeerResponse
}
// requestFromPeerResponse is a response sent to the reply channel of a
// requestFromPeerMsg query.
type requestFromPeerResponse struct {
err error
}
// calcNextReqDifficultyResponse is a response sent to the reply channel of a
// calcNextReqDifficultyMsg query.
type calcNextReqDifficultyResponse struct {
difficulty uint32
err error
}
// calcNextReqDifficultyMsg is a message type to be sent across the message
// channel for requesting the required difficulty of the next block.
type calcNextReqDifficultyMsg struct {
timestamp time.Time
reply chan calcNextReqDifficultyResponse
}
// calcNextReqDiffNodeMsg is a message type to be sent across the message
// channel for requesting the required difficulty for some block building on
// the given block hash.
type calcNextReqDiffNodeMsg struct {
hash *chainhash.Hash
timestamp time.Time
reply chan calcNextReqDifficultyResponse
}
// calcNextReqStakeDifficultyResponse is a response sent to the reply channel of a
// calcNextReqStakeDifficultyMsg query.
type calcNextReqStakeDifficultyResponse struct {
stakeDifficulty int64
err error
}
// calcNextReqStakeDifficultyMsg is a message type to be sent across the message
// channel for requesting the required stake difficulty of the next block.
type calcNextReqStakeDifficultyMsg struct {
reply chan calcNextReqStakeDifficultyResponse
}
// tipGenerationResponse is a response sent to the reply channel of a
// tipGenerationMsg query.
type tipGenerationResponse struct {
hashes []chainhash.Hash
err error
}
// tipGenerationMsg is a message type to be sent across the message
// channel for requesting the required the entire generation of a
// block node.
type tipGenerationMsg struct {
reply chan tipGenerationResponse
}
// forceReorganizationResponse is a response sent to the reply channel of a
// forceReorganizationMsg query.
type forceReorganizationResponse struct {
err error
}
// forceReorganizationMsg is a message type to be sent across the message
// channel for requesting that the block on head be reorganized to one of its
// adjacent orphans.
type forceReorganizationMsg struct {
formerBest chainhash.Hash
newBest chainhash.Hash
reply chan forceReorganizationResponse
}
// processBlockResponse is a response sent to the reply channel of a
// processBlockMsg.
type processBlockResponse struct {
onMainChain bool
isOrphan bool
err error
}
// processBlockMsg is a message type to be sent across the message channel
// for requested a block is processed. Note this call differs from blockMsg
// above in that blockMsg is intended for blocks that came from peers and have
// extra handling whereas this message essentially is just a concurrent safe
// way to call ProcessBlock on the internal block chain instance.
type processBlockMsg struct {
block *dcrutil.Block
flags blockchain.BehaviorFlags
reply chan processBlockResponse
}
// processTransactionResponse is a response sent to the reply channel of a
// processTransactionMsg.
type processTransactionResponse struct {
acceptedTxs []*dcrutil.Tx
err error
}
// processTransactionMsg is a message type to be sent across the message
// channel for requesting a transaction to be processed through the block
// manager.
type processTransactionMsg struct {
tx *dcrutil.Tx
allowOrphans bool
rateLimit bool
allowHighFees bool
reply chan processTransactionResponse
}
// isCurrentMsg is a message type to be sent across the message channel for
// requesting whether or not the block manager believes it is synced with
// the currently connected peers.
type isCurrentMsg struct {
reply chan bool
}
// pauseMsg is a message type to be sent across the message channel for
// pausing the block manager. This effectively provides the caller with
// exclusive access over the manager until a receive is performed on the
// unpause channel.
type pauseMsg struct {
unpause <-chan struct{}
}
// getCurrentTemplateMsg handles a request for the current mining block template.
type getCurrentTemplateMsg struct {
reply chan getCurrentTemplateResponse
}
// getCurrentTemplateResponse is a response sent to the reply channel of a
// getCurrentTemplateMsg.
type getCurrentTemplateResponse struct {
Template *BlockTemplate
}
// setCurrentTemplateMsg handles a request to change the current mining block
// template.
type setCurrentTemplateMsg struct {
Template *BlockTemplate
reply chan setCurrentTemplateResponse
}
// setCurrentTemplateResponse is a response sent to the reply channel of a
// setCurrentTemplateMsg.
type setCurrentTemplateResponse struct {
}
// getParentTemplateMsg handles a request for the current parent mining block
// template.
type getParentTemplateMsg struct {
reply chan getParentTemplateResponse
}
// getParentTemplateResponse is a response sent to the reply channel of a
// getParentTemplateMsg.
type getParentTemplateResponse struct {
Template *BlockTemplate
}
// setParentTemplateMsg handles a request to change the parent mining block
// template.
type setParentTemplateMsg struct {
Template *BlockTemplate
reply chan setParentTemplateResponse
}
// setParentTemplateResponse is a response sent to the reply channel of a
// setParentTemplateMsg.
type setParentTemplateResponse struct {
}
// headerNode is used as a node in a list of headers that are linked together
// between checkpoints.
type headerNode struct {
height int64
hash *chainhash.Hash
}
// chainState tracks the state of the best chain as blocks are inserted. This
// is done because blockchain is currently not safe for concurrent access and the
// block manager is typically quite busy processing block and inventory.
// Therefore, requesting this information from chain through the block manager
// would not be anywhere near as efficient as simply updating it as each block
// is inserted and protecting it with a mutex.
type chainState struct {
sync.Mutex
newestHash *chainhash.Hash
newestHeight int64
nextFinalState [6]byte
nextPoolSize uint32
nextStakeDifficulty int64
winningTickets []chainhash.Hash
missedTickets []chainhash.Hash
curPrevHash chainhash.Hash
pastMedianTime time.Time
}
// Best returns the block hash and height known for the tip of the best known
// chain.
//
// This function is safe for concurrent access.
func (c *chainState) Best() (*chainhash.Hash, int64) {
c.Lock()
defer c.Unlock()
return c.newestHash, c.newestHeight
}
// NextWPO returns next winner, potential, and overflow for the current top block
// of the blockchain.
//
// This function is safe for concurrent access.
func (c *chainState) NextFinalState() [6]byte {
c.Lock()
defer c.Unlock()
return c.nextFinalState
}
func (c *chainState) NextPoolSize() uint32 {
c.Lock()
defer c.Unlock()
return c.nextPoolSize
}
// NextWinners returns the eligible SStx hashes to vote on the
// next block as inputs for SSGen.
//
// This function is safe for concurrent access.
func (c *chainState) NextWinners() []chainhash.Hash {
c.Lock()
defer c.Unlock()
return c.winningTickets
}
// CurrentlyMissed returns the eligible SStx hashes that can be revoked.
//
// This function is safe for concurrent access.
func (c *chainState) CurrentlyMissed() []chainhash.Hash {
c.Lock()
defer c.Unlock()
return c.missedTickets
}
// GetTopPrevHash returns the current previous block hash.
//
// This function is safe for concurrent access.
func (c *chainState) GetTopPrevHash() chainhash.Hash {
c.Lock()
defer c.Unlock()
return c.curPrevHash
}
// blockManager provides a concurrency safe block manager for handling all
// incoming blocks.
type blockManager struct {
server *server
started int32
shutdown int32
chain *blockchain.BlockChain
rejectedTxns map[chainhash.Hash]struct{}
requestedTxns map[chainhash.Hash]struct{}
requestedEverTxns map[chainhash.Hash]uint8
requestedBlocks map[chainhash.Hash]struct{}
requestedEverBlocks map[chainhash.Hash]uint8
progressLogger *blockProgressLogger
syncPeer *serverPeer
msgChan chan interface{}
chainState chainState
wg sync.WaitGroup
quit chan struct{}
// The following fields are used for headers-first mode.
headersFirstMode bool
headerList *list.List
startHeader *list.Element
nextCheckpoint *chaincfg.Checkpoint
// lotteryDataBroadcastMutex is a mutex protecting the map
// that checks if block lottery data has been broadcasted
// yet for any given block, so notifications are never
// duplicated.
lotteryDataBroadcast map[chainhash.Hash]struct{}
lotteryDataBroadcastMutex sync.RWMutex
cachedCurrentTemplate *BlockTemplate
cachedParentTemplate *BlockTemplate
AggressiveMining bool
}
// resetHeaderState sets the headers-first mode state to values appropriate for
// syncing from a new peer.
func (b *blockManager) resetHeaderState(newestHash *chainhash.Hash, newestHeight int64) {
b.headersFirstMode = false
b.headerList.Init()
b.startHeader = nil
// When there is a next checkpoint, add an entry for the latest known
// block into the header pool. This allows the next downloaded header
// to prove it links to the chain properly.
if b.nextCheckpoint != nil {
node := headerNode{height: newestHeight, hash: newestHash}
b.headerList.PushBack(&node)
}
}
// updateChainState updates the chain state associated with the block manager.
// This allows fast access to chain information since blockchain is currently not
// safe for concurrent access and the block manager is typically quite busy
// processing block and inventory.
func (b *blockManager) updateChainState(newestHash *chainhash.Hash,
newestHeight int64, finalState [6]byte, poolSize uint32,
nextStakeDiff int64, winningTickets []chainhash.Hash,
missedTickets []chainhash.Hash, curPrevHash chainhash.Hash) {
b.chainState.Lock()
defer b.chainState.Unlock()
b.chainState.newestHash = newestHash
b.chainState.newestHeight = newestHeight
b.chainState.pastMedianTime = b.chain.BestSnapshot().MedianTime
b.chainState.nextFinalState = finalState
b.chainState.nextPoolSize = poolSize
b.chainState.nextStakeDifficulty = nextStakeDiff
b.chainState.winningTickets = winningTickets
b.chainState.missedTickets = missedTickets
b.chainState.curPrevHash = curPrevHash
}
// findNextHeaderCheckpoint returns the next checkpoint after the passed height.
// It returns nil when there is not one either because the height is already
// later than the final checkpoint or some other reason such as disabled
// checkpoints.
func (b *blockManager) findNextHeaderCheckpoint(height int64) *chaincfg.Checkpoint {
// There is no next checkpoint if checkpoints are disabled or there are
// none for this current network.
if cfg.DisableCheckpoints {
return nil
}
checkpoints := b.server.chainParams.Checkpoints
if len(checkpoints) == 0 {
return nil
}
// There is no next checkpoint if the height is already after the final
// checkpoint.
finalCheckpoint := &checkpoints[len(checkpoints)-1]
if height >= finalCheckpoint.Height {
return nil
}
// Find the next checkpoint.
nextCheckpoint := finalCheckpoint
for i := len(checkpoints) - 2; i >= 0; i-- {
if height >= checkpoints[i].Height {
break
}
nextCheckpoint = &checkpoints[i]
}
return nextCheckpoint
}
// startSync will choose the best peer among the available candidate peers to
// download/sync the blockchain from. When syncing is already running, it
// simply returns. It also examines the candidates for any which are no longer
// candidates and removes them as needed.
func (b *blockManager) startSync(peers *list.List) {
// Return now if we're already syncing.
if b.syncPeer != nil {
return
}
best := b.chain.BestSnapshot()
var bestPeer *serverPeer
var enext *list.Element
for e := peers.Front(); e != nil; e = enext {
enext = e.Next()
sp := e.Value.(*serverPeer)
// Remove sync candidate peers that are no longer candidates due
// to passing their latest known block. NOTE: The < is
// intentional as opposed to <=. While techcnically the peer
// doesn't have a later block when it's equal, it will likely
// have one soon so it is a reasonable choice. It also allows
// the case where both are at 0 such as during regression test.
if sp.LastBlock() < best.Height {
peers.Remove(e)
continue
}
// the best sync candidate is the most updated peer
if bestPeer == nil {
bestPeer = sp
}
if bestPeer.LastBlock() < sp.LastBlock() {
bestPeer = sp
}
}
// Start syncing from the best peer if one was selected.
if bestPeer != nil {
// Clear the requestedBlocks if the sync peer changes, otherwise
// we may ignore blocks we need that the last sync peer failed
// to send.
b.requestedBlocks = make(map[chainhash.Hash]struct{})
locator, err := b.chain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("Failed to get block locator for the "+
"latest block: %v", err)
return
}
bmgrLog.Infof("Syncing to block height %d from peer %v",
bestPeer.LastBlock(), bestPeer.Addr())
// When the current height is less than a known checkpoint we
// can use block headers to learn about which blocks comprise
// the chain up to the checkpoint and perform less validation
// for them. This is possible since each header contains the
// hash of the previous header and a merkle root. Therefore if
// we validate all of the received headers link together
// properly and the checkpoint hashes match, we can be sure the
// hashes for the blocks in between are accurate. Further, once
// the full blocks are downloaded, the merkle root is computed
// and compared against the value in the header which proves the
// full block hasn't been tampered with.
//
// Once we have passed the final checkpoint, or checkpoints are
// disabled, use standard inv messages learn about the blocks
// and fully validate them. Finally, regression test mode does
// not support the headers-first approach so do normal block
// downloads when in regression test mode.
if b.nextCheckpoint != nil &&
best.Height < b.nextCheckpoint.Height &&
!cfg.DisableCheckpoints {
err := bestPeer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
if err != nil {
bmgrLog.Errorf("Failed to push getheadermsg for the "+
"latest blocks: %v", err)
return
}
b.headersFirstMode = true
bmgrLog.Infof("Downloading headers for blocks %d to "+
"%d from peer %s", best.Height+1,
b.nextCheckpoint.Height, bestPeer.Addr())
} else {
err := bestPeer.PushGetBlocksMsg(locator, &zeroHash)
if err != nil {
bmgrLog.Errorf("Failed to push getblocksmsg for the "+
"latest blocks: %v", err)
return
}
}
b.syncPeer = bestPeer
} else {
bmgrLog.Warnf("No sync peer candidates available")
}
}
// isSyncCandidate returns whether or not the peer is a candidate to consider
// syncing from.
func (b *blockManager) isSyncCandidate(sp *serverPeer) bool {
// The peer is not a candidate for sync if it's not a full node.
return sp.Services()&wire.SFNodeNetwork == wire.SFNodeNetwork
}
// syncMiningStateAfterSync polls the blockMananger for the current sync
// state; if the mananger is synced, it executes a call to the peer to
// sync the mining state to the network.
func (b *blockManager) syncMiningStateAfterSync(sp *serverPeer) {
go func() {
for {
time.Sleep(3 * time.Second)
if !sp.Connected() {
return
}
if b.IsCurrent() {
msg := wire.NewMsgGetMiningState()
sp.QueueMessage(msg, nil)
return
}
}
}()
}
// handleNewPeerMsg deals with new peers that have signalled they may
// be considered as a sync peer (they have already successfully negotiated). It
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
func (b *blockManager) handleNewPeerMsg(peers *list.List, sp *serverPeer) {
// Ignore if in the process of shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
bmgrLog.Infof("New valid peer %s (%s)", sp, sp.UserAgent())
// Ignore the peer if it's not a sync candidate.
if !b.isSyncCandidate(sp) {
return
}
// Add the peer as a candidate to sync from.
peers.PushBack(sp)
// Start syncing by choosing the best candidate if needed.
b.startSync(peers)
// Grab the mining state from this peer after we're synced.
if !cfg.NoMiningStateSync {
b.syncMiningStateAfterSync(sp)
}
}
// handleDonePeerMsg deals with peers that have signalled they are done. It
// removes the peer as a candidate for syncing and in the case where it was
// the current sync peer, attempts to select a new best peer to sync from. It
// is invoked from the syncHandler goroutine.
func (b *blockManager) handleDonePeerMsg(peers *list.List, sp *serverPeer) {
// Remove the peer from the list of candidate peers.
for e := peers.Front(); e != nil; e = e.Next() {
if e.Value == sp {
peers.Remove(e)
break
}
}
bmgrLog.Infof("Lost peer %s", sp)
// Remove requested transactions from the global map so that they will
// be fetched from elsewhere next time we get an inv.
for k := range sp.requestedTxns {
delete(b.requestedTxns, k)
}
// Remove requested blocks from the global map so that they will be
// fetched from elsewhere next time we get an inv.
// TODO(oga) we could possibly here check which peers have these blocks
// and request them now to speed things up a little.
for k := range sp.requestedBlocks {
delete(b.requestedBlocks, k)
}
// Attempt to find a new peer to sync from if the quitting peer is the
// sync peer. Also, reset the headers-first state if in headers-first
// mode so
if b.syncPeer != nil && b.syncPeer == sp {
b.syncPeer = nil
if b.headersFirstMode {
best := b.chain.BestSnapshot()
b.resetHeaderState(&best.Hash, best.Height)
}
b.startSync(peers)
}
}
// handleTxMsg handles transaction messages from all peers.
func (b *blockManager) handleTxMsg(tmsg *txMsg) {
// NOTE: BitcoinJ, and possibly other wallets, don't follow the spec of
// sending an inventory message and allowing the remote peer to decide
// whether or not they want to request the transaction via a getdata
// message. Unfortunately, the reference implementation permits
// unrequested data, so it has allowed wallets that don't follow the
// spec to proliferate. While this is not ideal, there is no check here
// to disconnect peers for sending unsolicited transactions to provide
// interoperability.
txHash := tmsg.tx.Hash()
// Ignore transactions that we have already rejected. Do not
// send a reject message here because if the transaction was already
// rejected, the transaction was unsolicited.
if _, exists := b.rejectedTxns[*txHash]; exists {
bmgrLog.Debugf("Ignoring unsolicited previously rejected "+
"transaction %v from %s", txHash, tmsg.peer)
return
}
// Process the transaction to include validation, insertion in the
// memory pool, orphan handling, etc.
allowOrphans := cfg.MaxOrphanTxs > 0
acceptedTxs, err := b.server.txMemPool.ProcessTransaction(tmsg.tx,
allowOrphans, true, true)
// Remove transaction from request maps. Either the mempool/chain
// already knows about it and as such we shouldn't have any more
// instances of trying to fetch it, or we failed to insert and thus
// we'll retry next time we get an inv.
delete(tmsg.peer.requestedTxns, *txHash)
delete(b.requestedTxns, *txHash)
if err != nil {
// Do not request this transaction again until a new block
// has been processed.
b.rejectedTxns[*txHash] = struct{}{}
b.limitMap(b.rejectedTxns, maxRejectedTxns)
// When the error is a rule error, it means the transaction was
// simply rejected as opposed to something actually going wrong,
// so log it as such. Otherwise, something really did go wrong,
// so log it as an actual error.
if _, ok := err.(mempool.RuleError); ok {
bmgrLog.Debugf("Rejected transaction %v from %s: %v",
txHash, tmsg.peer, err)
} else {
bmgrLog.Errorf("Failed to process transaction %v: %v",
txHash, err)
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := mempool.ErrToRejectErr(err)
tmsg.peer.PushRejectMsg(wire.CmdTx, code, reason, txHash,
false)
return
}
b.server.AnnounceNewTransactions(acceptedTxs)
}
// current returns true if we believe we are synced with our peers, false if we
// still have blocks to check
func (b *blockManager) current() bool {
if !b.chain.IsCurrent() {
return false
}
// if blockChain thinks we are current and we have no syncPeer it
// is probably right.
if b.syncPeer == nil {
return true
}
// No matter what chain thinks, if we are below the block we are syncing
// to we are not current.
if b.chain.BestSnapshot().Height < b.syncPeer.LastBlock() {
return false
}
return true
}
// checkBlockForHiddenVotes checks to see if a newly added block contains
// any votes that were previously unknown to our daemon. If it does, it
// adds these votes to the cached parent block template.
//
// This is UNSAFE for concurrent access. It must be called in single threaded
// access through the block mananger. All template access must also be routed
// through the block manager.
func (b *blockManager) checkBlockForHiddenVotes(block *dcrutil.Block) {
var votesFromBlock []*dcrutil.Tx
for _, stx := range block.STransactions() {
if stake.IsSSGen(stx.MsgTx()) {
votesFromBlock = append(votesFromBlock, stx)
}
}
// Identify the cached parent template; it's possible that
// the parent template hasn't yet been updated, so we may
// need to use the current template.
var template *BlockTemplate
if b.cachedCurrentTemplate != nil {
if b.cachedCurrentTemplate.Height ==
block.Height() {
template = b.cachedCurrentTemplate
}
}
if template == nil &&
b.cachedParentTemplate != nil {
if b.cachedParentTemplate.Height ==
block.Height() {
template = b.cachedParentTemplate
}
}
// No template to alter.
if template == nil {
return
}
// Make sure that the template has the same parent
// as the new block.
if template.Block.Header.PrevBlock !=
block.MsgBlock().Header.PrevBlock {
bmgrLog.Warnf("error found while trying to check incoming " +
"block for hidden votes: template did not have the " +
"same parent as the incoming block")
return
}
// Now that we have the template, grab the votes and compare
// them with those found in the newly added block. If we don't
// the votes, they will need to be added to our block template.
// Here we map the vote by their ticket hashes, since the vote
// hash itself varies with the settings of voteBits.
var newVotes []*dcrutil.Tx
var oldTickets []*dcrutil.Tx
var oldRevocations []*dcrutil.Tx
oldVoteMap := make(map[chainhash.Hash]struct{},
int(b.server.chainParams.TicketsPerBlock))
if template != nil {
templateBlock := dcrutil.NewBlock(template.Block)
// Add all the votes found in our template. Keep their
// hashes in a map for easy lookup in the next loop.
for _, stx := range templateBlock.STransactions() {
mstx := stx.MsgTx()
txType := stake.DetermineTxType(mstx)
if txType == stake.TxTypeSSGen {
ticketH := mstx.TxIn[1].PreviousOutPoint.Hash
oldVoteMap[ticketH] = struct{}{}
newVotes = append(newVotes, stx)
}
// Create a list of old tickets and revocations
// while we're in this loop.
if txType == stake.TxTypeSStx {
oldTickets = append(oldTickets, stx)
}
if txType == stake.TxTypeSSRtx {
oldRevocations = append(oldRevocations, stx)
}
}
// Check the votes seen in the block. If the votes
// are new, append them.
for _, vote := range votesFromBlock {
ticketH := vote.MsgTx().TxIn[1].PreviousOutPoint.Hash
if _, exists := oldVoteMap[ticketH]; !exists {
newVotes = append(newVotes, vote)
}
}
}
// Check the length of the reconstructed voter list for
// integrity.
votesTotal := len(newVotes)
if votesTotal > int(b.server.chainParams.TicketsPerBlock) {
bmgrLog.Warnf("error found while adding hidden votes "+
"from block %v to the old block template: %v max "+
"votes expected but %v votes found", block.Hash(),
int(b.server.chainParams.TicketsPerBlock),
votesTotal)
return
}
// Clear the old stake transactions and begin inserting the
// new vote list along with all the old transactions. Do this
// for both the underlying template msgBlock and a new slice
// of transaction pointers so that a new merkle root can be
// calculated.
template.Block.ClearSTransactions()
updatedTxTreeStake := make([]*dcrutil.Tx, 0,
votesTotal+len(oldTickets)+len(oldRevocations))
for _, vote := range newVotes {
updatedTxTreeStake = append(updatedTxTreeStake, vote)
template.Block.AddSTransaction(vote.MsgTx())
}
for _, ticket := range oldTickets {
updatedTxTreeStake = append(updatedTxTreeStake, ticket)
template.Block.AddSTransaction(ticket.MsgTx())
}
for _, revocation := range oldRevocations {
updatedTxTreeStake = append(updatedTxTreeStake, revocation)
template.Block.AddSTransaction(revocation.MsgTx())
}
// Create a new coinbase and update the coinbase pointer
// in the underlying template msgBlock.
random, err := wire.RandomUint64()
if err != nil {
return
}
height := block.MsgBlock().Header.Height
opReturnPkScript, err := standardCoinbaseOpReturn(height, random)
if err != nil {
// Stopping at this step will lead to a corrupted block template
// because the stake tree has already been manipulated, so throw
// an error.
bmgrLog.Errorf("failed to create coinbase OP_RETURN while generating " +
"block with extra found voters")
return
}
coinbase, err := createCoinbaseTx(b.chain.FetchSubsidyCache(),
template.Block.Transactions[0].TxIn[0].SignatureScript,
opReturnPkScript,
int64(template.Block.Header.Height),
cfg.miningAddrs[rand.Intn(len(cfg.miningAddrs))],
uint16(votesTotal),
b.server.chainParams)
if err != nil {
bmgrLog.Errorf("failed to create coinbase while generating " +
"block with extra found voters")
return
}
template.Block.Transactions[0] = coinbase.MsgTx()
// Patch the header. First, reconstruct the merkle trees, then
// correct the number of voters, and finally recalculate the size.
var updatedTxTreeRegular []*dcrutil.Tx
updatedTxTreeRegular = append(updatedTxTreeRegular, coinbase)
for i, mtx := range template.Block.Transactions {
// Coinbase
if i == 0 {
continue
}
tx := dcrutil.NewTx(mtx)
updatedTxTreeRegular = append(updatedTxTreeRegular, tx)
}
merkles := blockchain.BuildMerkleTreeStore(updatedTxTreeRegular)
template.Block.Header.StakeRoot = *merkles[len(merkles)-1]
smerkles := blockchain.BuildMerkleTreeStore(updatedTxTreeStake)
template.Block.Header.Voters = uint16(votesTotal)
template.Block.Header.StakeRoot = *smerkles[len(smerkles)-1]
template.Block.Header.Size = uint32(template.Block.SerializeSize())
}
// handleBlockMsg handles block messages from all peers.
func (b *blockManager) handleBlockMsg(bmsg *blockMsg) {
// If we didn't ask for this block then the peer is misbehaving.
blockHash := bmsg.block.Hash()
if _, exists := bmsg.peer.requestedBlocks[*blockHash]; !exists {
// Check to see if we ever requested this block, since it may
// have been accidentally sent in duplicate. If it was,
// increment the counter in the ever requested map and make
// sure that the node isn't spamming us with these blocks.
received, exists := b.requestedEverBlocks[*blockHash]
if exists {
if received > maxResendLimit {
bmgrLog.Warnf("Got duplicate block %v from %s -- "+
"too many times, disconnecting",
blockHash, bmsg.peer.Addr())
bmsg.peer.Disconnect()
return
}
b.requestedEverBlocks[*blockHash]++
} else {
bmgrLog.Warnf("Got unrequested block %v from %s -- "+
"disconnecting", blockHash, bmsg.peer.Addr())
bmsg.peer.Disconnect()
return
}
}
// When in headers-first mode, if the block matches the hash of the
// first header in the list of headers that are being fetched, it's
// eligible for less validation since the headers have already been
// verified to link together and are valid up to the next checkpoint.
// Also, remove the list entry for all blocks except the checkpoint
// since it is needed to verify the next round of headers links
// properly.
isCheckpointBlock := false
behaviorFlags := blockchain.BFNone
if b.headersFirstMode {
firstNodeEl := b.headerList.Front()
if firstNodeEl != nil {
firstNode := firstNodeEl.Value.(*headerNode)
if blockHash.IsEqual(firstNode.hash) {
behaviorFlags |= blockchain.BFFastAdd
if firstNode.hash.IsEqual(b.nextCheckpoint.Hash) {
isCheckpointBlock = true
} else {
b.headerList.Remove(firstNodeEl)
}
}
}
}
// Remove block from request maps. Either chain will know about it and
// so we shouldn't have any more instances of trying to fetch it, or we
// will fail the insert and thus we'll retry next time we get an inv.
delete(bmsg.peer.requestedBlocks, *blockHash)
delete(b.requestedBlocks, *blockHash)