-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_pyowl.py
57 lines (42 loc) · 1.44 KB
/
test_pyowl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Author: Vlad Niculae <[email protected]>
# License: BSD 3 clause
import numpy as np
from numpy.testing import assert_array_almost_equal
from pyowl import prox_owl
rng = np.random.RandomState(0)
# cf. scikit-learn-contrib/lightning impl/penalty.py
def project_simplex(v, z=1):
if np.sum(v) <= z:
return v
n_features = v.shape[0]
u = np.sort(v)[::-1]
cssv = np.cumsum(u) - z
ind = np.arange(n_features) + 1
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
w = np.maximum(v - theta, 0)
return w
# cf. scikit-learn-contrib/lightning impl/penalty.py
def project_l1_ball(v, z=1):
return np.sign(v) * project_simplex(np.abs(v), z)
def prox_linf(v, alpha):
# cf. Proximal Algorithms, Parikh & Boyd, eq. 6.8
# dual ball B is the L1 ball
p = project_l1_ball(v / alpha)
return v - alpha * p
def test_prox_special_cases():
for _ in range(20):
v = rng.randn(10)
alpha = rng.uniform(0.001, 1)
# l1 proximal operator
z_expected = np.maximum(0, v - alpha)
z_expected -= np.maximum(0, -v - alpha)
z_obtained = prox_owl(v, alpha * np.ones_like(v))
assert_array_almost_equal(z_expected, z_obtained)
# l_inf proximal operator
z_expected = prox_linf(v, alpha)
w = np.zeros_like(v)
w[0] = alpha
z_obtained = prox_owl(v, w)
assert_array_almost_equal(z_expected, z_obtained)