-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmmr_summarizer.py
324 lines (261 loc) · 11.1 KB
/
mmr_summarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import nltk
import os
import math
import string
import re
import sentence
from nltk.corpus import stopwords
#---------------------------------------------------------------------------------
# Description : Function to preprocess the files in the document cluster before
# passing them into the MMR summarizer system. Here the sentences
# of the document cluster are modelled as sentences after extracting
# from the files in the folder path.
# Parameters : file_name, name of the file in the document cluster
# Return : list of sentence object
#---------------------------------------------------------------------------------
def processFile(file_name):
# read file from provided folder path
f = open(file_name,'r')
text_0 = f.read()
# extract content in TEXT tag and remove tags
text_1 = re.search(r"<TEXT>.*</TEXT>",text_0, re.DOTALL)
text_1 = re.sub("<TEXT>\n","",text_1.group(0))
text_1 = re.sub("\n</TEXT>","",text_1)
# replace all types of quotations by normal quotes
text_1 = re.sub("\n"," ",text_1)
text_1 = re.sub("\"","\"",text_1)
text_1 = re.sub("''","\"",text_1)
text_1 = re.sub("``","\"",text_1)
text_1 = re.sub(" +"," ",text_1)
# segment data into a list of sentences
sentence_token = nltk.data.load('tokenizers/punkt/english.pickle')
lines = sentence_token.tokenize(text_1.strip())
# setting the stemmer
sentences = []
porter = nltk.PorterStemmer()
# modelling each sentence in file as sentence object
for line in lines:
# original words of the sentence before stemming
originalWords = line[:]
line = line.strip().lower()
# word tokenization
sent = nltk.word_tokenize(line)
# stemming words
stemmedSent = [porter.stem(word) for word in sent]
stemmedSent = filter(lambda x: x!='.'and x!='`'and x!=','and x!='?'and x!="'"
and x!='!' and x!='''"''' and x!="''" and x!="'s", stemmedSent)
# list of sentence objects
if stemmedSent != []:
sentences.append(sentence.sentence(file_name, stemmedSent, originalWords))
return sentences
#---------------------------------------------------------------------------------
# Description : Function to find the term frequencies of the words in the
# sentences present in the provided document cluster
# Parameters : sentences, sentences of the document cluster
# Return : dictonary of word, term frequency score
#---------------------------------------------------------------------------------
def TFs(sentences):
# initialize tfs dictonary
tfs = {}
# for every sentence in document cluster
for sent in sentences:
# retrieve word frequencies from sentence object
wordFreqs = sent.getWordFreq()
# for every word
for word in wordFreqs.keys():
# if word already present in the dictonary
if tfs.get(word, 0) != 0:
tfs[word] = tfs[word] + wordFreqs[word]
# else if word is being added for the first time
else:
tfs[word] = wordFreqs[word]
return tfs
#---------------------------------------------------------------------------------
# Description : Function to find the inverse document frequencies of the words in
# the sentences present in the provided document cluster
# Parameters : sentences, sentences of the document cluster
# Return : dictonary of word, inverse document frequency score
#---------------------------------------------------------------------------------
def IDFs(sentences):
N = len(sentences)
idf = 0
idfs = {}
words = {}
w2 = []
# every sentence in our cluster
for sent in sentences:
# every word in a sentence
for word in sent.getPreProWords():
# not to calculate a word's IDF value more than once
if sent.getWordFreq().get(word, 0) != 0:
words[word] = words.get(word, 0)+ 1
# for each word in words
for word in words:
n = words[word]
# avoid zero division errors
try:
w2.append(n)
idf = math.log10(float(N)/n)
except ZeroDivisionError:
idf = 0
# reset variables
idfs[word] = idf
return idfs
#---------------------------------------------------------------------------------
# Description : Function to find TF-IDF score of the words in the document cluster
# Parameters : sentences, sentences of the document cluster
# Return : dictonary of word, TF-IDF score
#---------------------------------------------------------------------------------
def TF_IDF(sentences):
# Method variables
tfs = TFs(sentences)
idfs = IDFs(sentences)
retval = {}
# for every word
for word in tfs:
#calculate every word's tf-idf score
tf_idfs= tfs[word] * idfs[word]
# add word and its tf-idf score to dictionary
if retval.get(tf_idfs, None) == None:
retval[tf_idfs] = [word]
else:
retval[tf_idfs].append(word)
return retval
#---------------------------------------------------------------------------------
# Description : Function to find the sentence similarity for a pair of sentences
# by calculating cosine similarity
# Parameters : sentence1, first sentence
# sentence2, second sentence to which first sentence has to be compared
# IDF_w, dictinoary of IDF scores of words in the document cluster
# Return : cosine similarity score
#---------------------------------------------------------------------------------
def sentenceSim(sentence1, sentence2, IDF_w):
numerator = 0
denominator = 0
for word in sentence2.getPreProWords():
numerator+= sentence1.getWordFreq().get(word,0) * sentence2.getWordFreq().get(word,0) * IDF_w.get(word,0) ** 2
for word in sentence1.getPreProWords():
denominator+= ( sentence1.getWordFreq().get(word,0) * IDF_w.get(word,0) ) ** 2
# check for divide by zero cases and return back minimal similarity
try:
return numerator / math.sqrt(denominator)
except ZeroDivisionError:
return float("-inf")
#---------------------------------------------------------------------------------
# Description : Function to build a query of n words on the basis of TF-IDF value
# Parameters : sentences, sentences of the document cluster
# IDF_w, IDF values of the words
# n, desired length of query (number of words in query)
# Return : query sentence consisting of best n words
#---------------------------------------------------------------------------------
def buildQuery(sentences, TF_IDF_w, n):
#sort in descending order of TF-IDF values
scores = TF_IDF_w.keys()
scores.sort(reverse=True)
i = 0
j = 0
queryWords = []
# select top n words
while(i<n):
words = TF_IDF_w[scores[j]]
for word in words:
queryWords.append(word)
i=i+1
if (i>n):
break
j=j+1
# return the top selected words as a sentence
return sentence.sentence("query", queryWords, queryWords)
#---------------------------------------------------------------------------------
# Description : Function to find the best sentence in reference to the query
# Parameters : sentences, sentences of the document cluster
# query, reference query
# IDF, IDF value of words of the document cluster
# Return : best sentence among the sentences in the document cluster
#---------------------------------------------------------------------------------
def bestSentence(sentences, query, IDF):
best_sentence = None
maxVal = float("-inf")
for sent in sentences:
similarity = sentenceSim(sent, query, IDF)
if similarity > maxVal:
best_sentence = sent
maxVal = similarity
sentences.remove(best_sentence)
return best_sentence
#---------------------------------------------------------------------------------
# Description : Function to create the summary set of a desired number of words
# Parameters : sentences, sentences of the document cluster
# best_sentnece, best sentence in the document cluster
# query, reference query for the document cluster
# summary_length, desired number of words for the summary
# labmta, lambda value of the MMR score calculation formula
# IDF, IDF value of words in the document cluster
# Return : name
#---------------------------------------------------------------------------------
def makeSummary(sentences, best_sentence, query, summary_length, lambta, IDF):
summary = [best_sentence]
sum_len = len(best_sentence.getPreProWords())
MMRval={}
# keeping adding sentences until number of words exceeds summary length
while (sum_len < summary_length):
MMRval={}
for sent in sentences:
MMRval[sent] = MMRScore(sent, query, summary, lambta, IDF)
maxxer = max(MMRval, key=MMRval.get)
summary.append(maxxer)
sentences.remove(maxxer)
sum_len += len(maxxer.getPreProWords())
return summary
#---------------------------------------------------------------------------------
# Description : Function to calculate the MMR score given a sentence, the query
# and the current best set of sentences
# Parameters : Si, particular sentence for which the MMR score has to be calculated
# query, query sentence for the particualr document cluster
# Sj, the best sentences that are already selected
# lambta, lambda value in the MMR formula
# IDF, IDF value for words in the cluster
# Return : name
#---------------------------------------------------------------------------------
def MMRScore(Si, query, Sj, lambta, IDF):
Sim1 = sentenceSim(Si, query, IDF)
l_expr = lambta * Sim1
value = [float("-inf")]
for sent in Sj:
Sim2 = sentenceSim(Si, sent, IDF)
value.append(Sim2)
r_expr = (1-lambta) * max(value)
MMR_SCORE = l_expr - r_expr
return MMRScore
# -------------------------------------------------------------
# MAIN FUNCTION
# -------------------------------------------------------------
if __name__=='__main__':
# set the main Document folder path where the subfolders are present
main_folder_path = os.getcwd() + "/Documents"
# read in all the subfolder names present in the main folder
for folder in os.listdir(main_folder_path):
print "Running MMR Summarizer for files in folder: ", folder
# for each folder run the MMR summarizer and generate the final summary
curr_folder = main_folder_path + "/" + folder
# find all files in the sub folder selected
files = os.listdir(curr_folder)
sentences = []
for file in files:
sentences = sentences + processFile(curr_folder + "/" + file)
# calculate TF, IDF and TF-IDF scores
# TF_w = TFs(sentences)
IDF_w = IDFs(sentences)
TF_IDF_w = TF_IDF(sentences)
# build query; set the number of words to include in our query
query = buildQuery(sentences, TF_IDF_w, 10)
# pick a sentence that best matches the query
best1sentence = bestSentence(sentences, query, IDF_w)
# build summary by adding more relevant sentences
summary = makeSummary(sentences, best1sentence, query, 100, 0.5, IDF_w)
final_summary = ""
for sent in summary:
final_summary = final_summary + sent.getOriginalWords() + "\n"
final_summary = final_summary[:-1]
results_folder = os.getcwd() + "/MMR_results"
with open(os.path.join(results_folder,(str(folder) + ".MMR")),"w") as fileOut: fileOut.write(final_summary)