-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
73 lines (58 loc) · 3.2 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from src.dataset.loader import define_path
from src.dataset.intention.jaad_dataset import build_pedb_dataset_jaad, subsample_and_balance
from sklearn.metrics import average_precision_score, classification_report, f1_score
from collections import defaultdict
import argparse
def get_args():
parser = argparse.ArgumentParser(description='cropped frame model Training')
parser.add_argument('--jaad', default=True, action='store_true',
help='use JAAD dataset')
parser.add_argument('--pie', default=False, action='store_true',
help='use PIE dataset')
parser.add_argument('--titan', default=False, action='store_true',
help='use TITAN dataset')
parser.add_argument('--fps', default=5, type=int,
metavar='FPS', help='sampling rate(fps)')
parser.add_argument('--max-frames', default=5, type=int,
help='maximum number of frames in histroy sequence')
parser.add_argument('--pred', default=10, type=int,
help='prediction length, predicting-ahead time')
parser.add_argument('-s', '--seed', type=int, default=99,
help='set random seed for sampling')
args = parser.parse_args()
return args
def main():
args = get_args()
# loading data
print('Annotation loading-->', 'JAAD:', args.jaad, 'PIE:', args.pie, 'TITAN:', args.titan)
print('------------------------------------------------------------------')
anns_paths_eval, _ = define_path(use_jaad=args.jaad, use_pie=args.pie, use_titan=args.titan)
print('-->>')
eval_intent_sequences = build_pedb_dataset_jaad(anns_paths_eval["JAAD"]["anns"], anns_paths_eval["JAAD"]["split"], image_set = "test", fps=args.fps, prediction_frames=args.pred, verbose=True)
pred_intent_sequences = build_pedb_dataset_jaad(anns_paths_eval["JAAD"]["anns"], anns_paths_eval["JAAD"]["split"], image_set = "test", fps=args.fps, prediction_frames=0, verbose=True)
eval_intent_sequences_cropped = subsample_and_balance(eval_intent_sequences, balance=False, max_frames=args.max_frames, seed=args.seed)
pred_intent_sequences_cropped = subsample_and_balance(pred_intent_sequences, balance=False, max_frames=args.max_frames, seed=args.seed)
eval_samples = defaultdict(dict)
for intent in eval_intent_sequences_cropped:
sample_id = intent['sample_id']
label = intent['label']
eval_samples[sample_id]['label'] = label
for intent in pred_intent_sequences_cropped:
sample_id = intent['sample_id']
if sample_id not in eval_samples:
continue
label = intent['label']
eval_samples[sample_id]['pred'] = label
print('------------------------------------------------------------------')
print('Finish annotation loading', '\n')
y_true = []
y_pred = []
for el in eval_samples.values():
y_true.append(el['label'])
y_pred.append(el['pred'])
print(classification_report(y_true, y_pred))
print('------------------------------------------------------------------')
print(f'f1 score: {f1_score(y_true, y_pred):.3f}')
if __name__ == '__main__':
print('Baseline evaluation')
main()