-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_yolo_data_cluster.py
304 lines (250 loc) · 12.7 KB
/
test_yolo_data_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from ultralytics import YOLO #model
from ultralytics import yolo #librairy
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, TQDM_BAR_FORMAT, callbacks,
is_git_dir, yaml_load, colorstr)
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, attempt_load_one_weight)
import argparse
import time
from tqdm import tqdm
import numpy as np
import torch
import torch.distributed as dist
class DetectionTrainerCustom(yolo.v8.detect.DetectionTrainer):
def do_pass():
pass
#could overide if needed : l199 yolo/engine/trainer
#def _setup_train(self, world_size):
#surement probleme de files avec __init__
#THIS override
def _do_train(self, world_size=1):
"""
overide training step to custom train
"""
if world_size > 1:
self._setup_ddp(world_size)
self._setup_train(world_size)
self.epoch_time = None
self.epoch_time_start = time.time()
self.train_time_start = time.time()
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
self.run_callbacks('on_train_start')
LOGGER.info(f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f'Starting training for {self.epochs} epochs...')
if self.args.close_mosaic:
base_idx = (self.epochs - self.args.close_mosaic) * nb
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
#before epochs
#print("rank", RANK) #-1
BACKBONE = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
HEAD_FIRST = [12, 15]
HEAD_SECOND = [16, 18, 19, 21]
#freeze backbone and first part of head
for name, param in self.model.named_parameters():
layer_num = int(name.split(".")[1])
if layer_num in BACKBONE or layer_num in HEAD_FIRST:
param.requires_grad = False
print(f"param {name} has requ_grad : {param.requires_grad}")
#FIX LR (2times smaller than final lr) : + dont call lr_sceduler
for g in self.optimizer.param_groups:
g['lr'] = 5e-5
#training loop
for epoch in range(0, self.epochs):
self.epoch = epoch
self.run_callbacks('on_train_epoch_start')
self.model.train()
#reduce lr
if epoch == self.epochs//3*2:
print("reduce lr to 1e-5")
for g in self.optimizer.param_groups:
g['lr'] = 1e-5
#unfreeze some layers
if epoch == self.epochs//3:
print("unfreeze head1 at ", epoch)
for name, param in self.model.named_parameters():
layer_num = int(name.split(".")[1])
if layer_num in HEAD_FIRST:
param.requires_grad = True
print(f"param {name} has requ_grad : {param.requires_grad}")
# dont touh backbone : gives worse results
# if epoch == self.epochs//3*2:
# print("unfreeze beackbone at ", epoch)
# for name, param in self.model.named_parameters():
# layer_num = int(name.split(".")[1])
# if layer_num in BACKBONE:
# param.requires_grad = True
# print(f"param {name} has requ_grad : {param.requires_grad}")
if RANK != -1:
self.train_loader.sampler.set_epoch(epoch)
pbar = enumerate(self.train_loader)
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic):
LOGGER.info('Closing dataloader mosaic')
if hasattr(self.train_loader.dataset, 'mosaic'):
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, 'close_mosaic'):
self.train_loader.dataset.close_mosaic(hyp=self.args)
if RANK in (-1, 0):
LOGGER.info(self.progress_string())
pbar = tqdm(enumerate(self.train_loader), total=nb, bar_format=TQDM_BAR_FORMAT)
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.run_callbacks('on_train_batch_start')
# Warmup
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())
for j, x in enumerate(self.optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
preds = self.model(batch['img'])
self.loss, self.loss_items = self.criterion(preds, batch)
if RANK != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# Backward
self.scaler.scale(self.loss).backward()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# Log
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if RANK in (-1, 0):
pbar.set_description(
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch['cls'].shape[0], batch['img'].shape[-1]))
self.run_callbacks('on_batch_end')
if self.args.plots and ni in self.plot_idx:
self.plot_training_samples(batch, ni)
self.run_callbacks('on_train_batch_end')
self.lr = {f'lr/pg{ir}': x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
#self.scheduler.step() #don't change lr
self.run_callbacks('on_train_epoch_end')
if RANK in (-1, 0):
# Validation
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == self.epochs) or self.stopper.possible_stop
if self.args.val or final_epoch:
self.metrics, self.fitness = self.validate()
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
self.stop = self.stopper(epoch + 1, self.fitness)
# Save model
if self.args.save or (epoch + 1 == self.epochs):
self.save_model()
self.run_callbacks('on_model_save')
tnow = time.time()
self.epoch_time = tnow - self.epoch_time_start
self.epoch_time_start = tnow
self.run_callbacks('on_fit_epoch_end')
torch.cuda.empty_cache() # clears GPU vRAM at end of epoch, can help with out of memory errors
# Early Stopping
if RANK != -1: # if DDP training
broadcast_list = [self.stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
if RANK != 0:
self.stop = broadcast_list[0]
if self.stop:
break # must break all DDP ranks
if RANK in (-1, 0):
# Do final val with best.pt
LOGGER.info(f'\n{epoch - self.start_epoch + 1} epochs completed in '
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.')
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.run_callbacks('on_train_end')
torch.cuda.empty_cache()
self.run_callbacks('teardown')
#mapping for YOLOCustom : class not used
TASK_MAP = {
'classify': [
ClassificationModel, yolo.v8.classify.ClassificationTrainer, yolo.v8.classify.ClassificationValidator,
yolo.v8.classify.ClassificationPredictor],
'detect': [
DetectionModel, DetectionTrainerCustom, yolo.v8.detect.DetectionValidator, #custom trainer
yolo.v8.detect.DetectionPredictor],
}
class YOLOCustom(YOLO):
"""
override of some fuctions to perform our custom training
"""
def train(self, **kwargs):
"""
Trains the model on a given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration.
these are :
cfg
data : 'coco.yaml'
'imgsz': 640
"""
self._check_is_pytorch_model()
if self.session: # Ultralytics HUB session
if any(kwargs):
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
kwargs = self.session.train_args
self.session.check_disk_space()
check_pip_update_available()
overrides = self.overrides.copy()
#breakpoint()
overrides.update(kwargs)
if kwargs.get('cfg'):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs['cfg']))
overrides['mode'] = 'train'
if not overrides.get('data'):
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
if overrides.get('resume'):
overrides['resume'] = self.ckpt_path
self.task = overrides.get('task') or self.task
self.trainer = TASK_MAP[self.task][1](overrides=overrides) #NEED HERE TO REDIFINE THE TRAINER
if not overrides.get('resume'): # manually set model only if not resuming
#load the pretrained weights and model with requ_grad = True
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train()
# update model and cfg after training
if RANK in (-1, 0):
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
if __name__ == "__main__":
#parse args
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='yolov8n.pt',
choices=('yolov8n.pt', 'yolov8m.pt', 'yolov8x.pt'),
help='size of model to use')
parser.add_argument('--epochs', default=3, type=int,
help='number of epochs')
args = parser.parse_args()
model = args.model
print("loading yolo, model: ", model)
model = YOLOCustom('trained_models/' + model) #pretrained
# data_folder = "/work/nmuenger_trinca/annotations/" #real
#data_folder = "/work/vita/nmuenger_trinca/annotations_reduced/" #for tests
#in yolo data dataloader stream loader l.180 : added this dir (hardcoded) :(
#NEED to test with data side to model (also slooooow ?)
#---PREDICTIONS---
#pred = model(data_folder + "train.txt") #file that say where the images are
#print(pred)
#print(pred[0].boxes.cls)
#print(pred[0].boxes.xywhn)
#check if everythink is on gpu : YES yolo/engine/trainer.py l171
model.train(data = "tsr_dataset.yaml", epochs=args.epochs)